EClamp2410P ESD Protection Device for T-Flash/MicroSD Interfaces

PROTECTION PRODUCTS - EMIClamp™

Description

The EClampTM2410P is combination EMI filter and line termination device with integrated TVS diodes for use on Multimedia Card interfaces. This state-of-the-art device utilizes solid-state silicon-avalanche technology for superior clamping performance and DC electrical characteristics. They have been optimized for **protection of T-Flash/MicroSD interfaces** in cellular phones and other portable electronics.

The device consists of six circuits that include series impedance matching resistors and pull up resistors as required by the SD specification. TVS diodes are included on each line for ESD protection. An additional TVS diode connection is included for protection of the voltage (Vdd) bus. Termination resistor value of 45 Ohms is included on the DATO, DAT1, DAT2, DAT3, CMD, and CLK lines. Pull up resistors of 15k Ohms are included on DAT0, DAT1, DAT2, and CMD lines while a 50k Ohm pull up is inlcuded on the DAT3 line. These may be configured for devices operating in SD or SPI mode . The TVS diodes provide effective suppression of ESD voltages in excess of ±15kV (air discharge) and ±8kV (contact discharge) per IEC 61000-4-2, level 4.

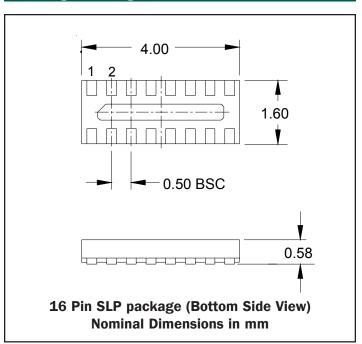
The EClamp2410P is in a 16-pin, RoHS/WEEE compliant, SLP4016P16 package. It measures $4.0 \times 1.6 \times 0.58$ mm. The leads are spaced at a pitch of 0.5mm and are finished with lead-free NiPd.

Features

- Bidirectional EMI/RFI filtering and line termination with integrated ESD protection
- ◆ ESD protection to IEC 61000-4-2 (ESD) Level 4, ±15kV (air), ±8kV (contact)
- TVS working voltage: 5V
- lacktriangle Termination Resistors: 45Ω
- \blacklozenge Pull Up Resistors: 15k $\!\Omega$ (3 each) and 50k $\!\Omega$
- ◆ Typical Capacitance per Line: 12pF (VR = 2.5V)
- Protection and termination for six lines + Vdd
- Solid-state technology

Mechanical Characteristics

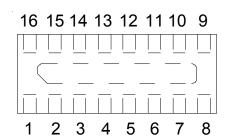
- ◆ SLP4016P16 16-pin package
- ◆ RoHS/WEEE Compliant
- ◆ Nominal Dimensions: 4.0 x 1.6 x 0.58 mm
- ◆ Lead Pitch: 0.5mm
- Lead finish: NiPdAu
- Marking: Marking Code
- Packaging: Tape and Reel

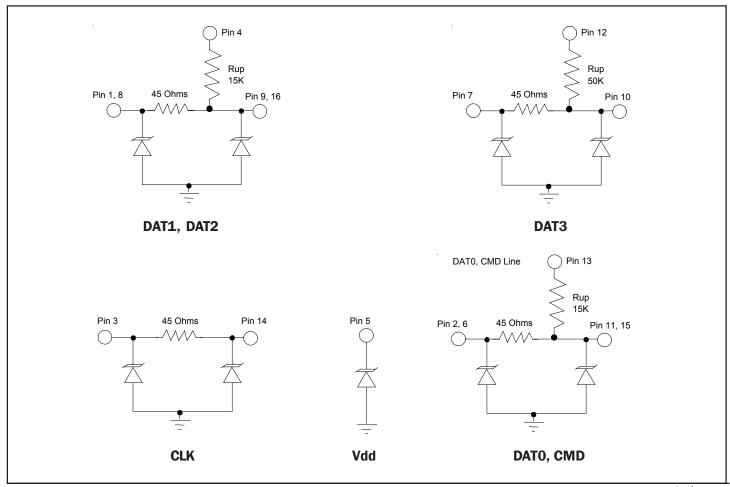

Applications

- ◆ T-Flash / MicroSD Interfaces
- MMC Interfaces
- CDMA, GSM, 3G Cell Phones

Pin Configuration

DAT1 In DAT1 Out DAT0 In **DAT0 Out** CLK In **CLK Out** Rup1 Rup3 Vdd Rup2 CMD In CMD Out DAT3 In **DAT3 Out** DAT2 In DAT2 Out Pin Designation (Top View)


Package Configuration


Pin Identification and Configuration

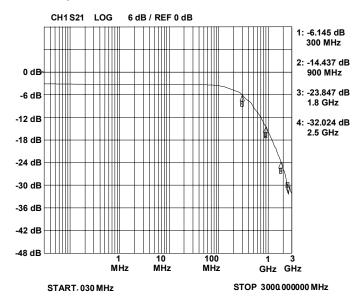
Pin	Symbol	Identification
1, 16	DAT1	Data line #1 input/output with pull-up resistor
2, 15	DATO	Data line #0 Input/Output
3, 14	Clock	Clock line Input/Output
4	Rup1	15K Pull-up resistor from DAT1 & DAT2
5	Vdd	Power Supply ESD Protection
6, 11	CMD	Command Line Input/Output
7, 10	DAT3	Data line #3 input/output with pull-up resistor
8, 9	DAT2	Data line #2 input/output with pull-up resistor
12	Rup2	50K Pull-Up Resistor from DAT3
13	Rup3	VCC Circuit 3A
Center tab	GND	Ground connection

Pin Configuration (Top View)

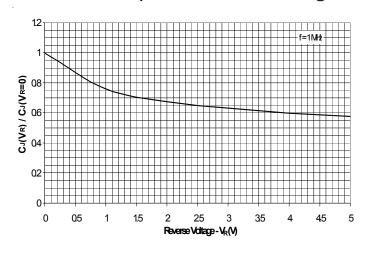
Schematics & Component Values

Maximum Ratings

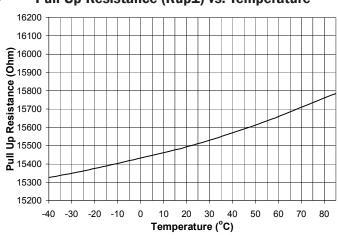
Rating	Symbol	Value	Units
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	+/- 17 +/- 12	kV
Junction Temperature	T,	125	°C
Operating Temperature	T _{op}	-40 to +85	°C
Storage Temperature	T _{STG}	-55 to +150	°C

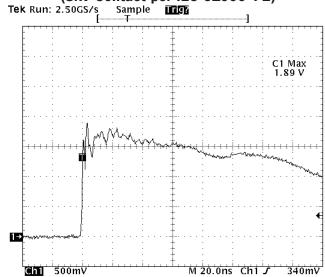

Electrical Characteristics (T = 25°C)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
TVS Reverse Stand-Off Voltage	V _{RWM}				5	٧
TVS Reverse Breakdown Voltage	V_{BR}	I _t = 1mA	6	8	10	٧
TVS Reverse Leakage Current	I _R	V _{RWM} = 3.0V			0.5	μΑ
Series Resistors	R	Each Line	38	45	52	Ohms
DAT Pull Up Resistor 1	R _{up1}		12	15	17	k Ohms
DAT Pull Up Resistor 2	R _{up2}		42	50	58	k Ohms
Total Capacitance C _{in}		Input to Gnd, Each Line V _R = 2.5V, f = 1MHz	10	12	15	pF



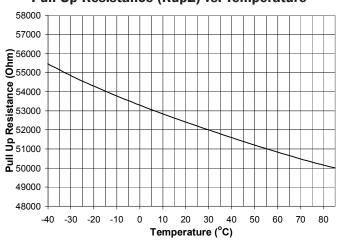
Typical Characteristics


Typical Insertion Loss S21 (Each Line)


Normalized Capacitance vs. Reverse Voltage

Pull Up Resistance (Rup1) vs. Temperature

ESD Clamping (8kV Contact per IEC 61000-4-2)



Note: Data is taken with a 10x attenuator

Series Resistance vs. Temperature

Pull Up Resistance (Rup2) vs. Temperature

Applications Information

Device Connection

The EClamp2410P is a microSD/T-Flash interface device designed for use in cell phones and other portable electronic devices. The EClamp2410P is comprised of series and pull up resistors required on the microSD interface. Each line also includes TVS diodes for ESD protection. The device may be configured for SD or SPI mode operation. In SD mode for example, the 15k Ohm pull up resistors (Rup 1 and Rup 3) are connected to VDD. In SPI mode pin 4 is not connected (Rup 1) since these are reserved lines. The 50k Ohm pull up resistor is used for card detection or SPI mode selection during power up and is disconnected by the user during regular data transfer.

The EClamp2410P is in a 16-pin SLP package. Electrical connection is made to the 16 pins located at the bottom of the device. The device has a flow through design for easy layout. Pin connections are noted in Figure 1. A center tab serves as the ground connection. Recommendations for the ground connection are given below.

Ground Connection Recommendation

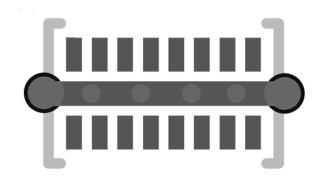
Parasitic inductance present in the board layout will affect the filtering and ESD performance of the device. Ground loop inductance can be reduced by using multiple vias to make the connection to the ground plane. Figure 2 shows the recommended device layout. The ground pad vias have a diameter of 0.008 inches (0.20 mm) while the two external vias have a diameter of 0.010 inches (0.250mm). The internal vias are spaced approximately evenly from the center of the pad. The designer may choose to use more vias with a smaller diameter (such as 0.005 inches or 0.125mm) since changing the diameter of the via will result in little change in inductance.

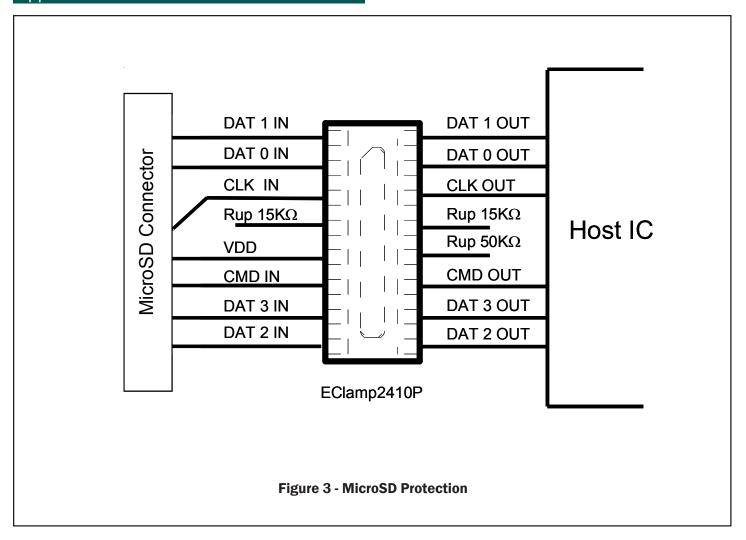
Layout Guidelines for Optimum ESD Protection

Good circuit board layout is critical not only for signal integrity, but also for effective suppression of ESD induced transients. For optimum ESD protection, the following guidelines are recommended:

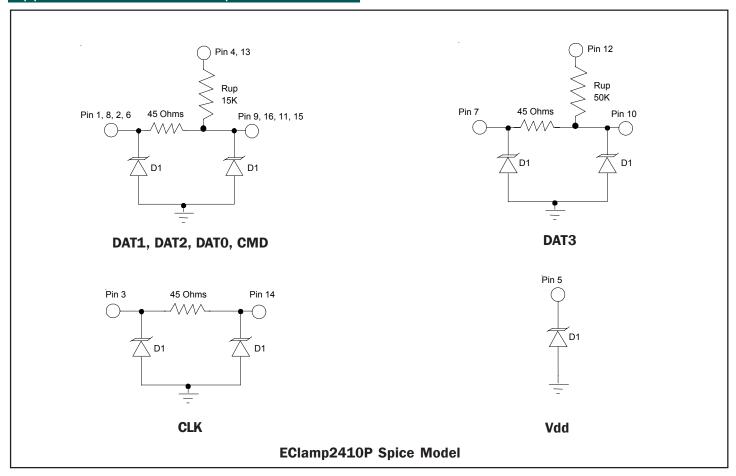
• Place the device as close to the connector as possible. This practice restricts ESD coupling into adjacent traces and reduces parasitic inductance.

Figure 1 - Pin Identification and Configuration (Top Side View)

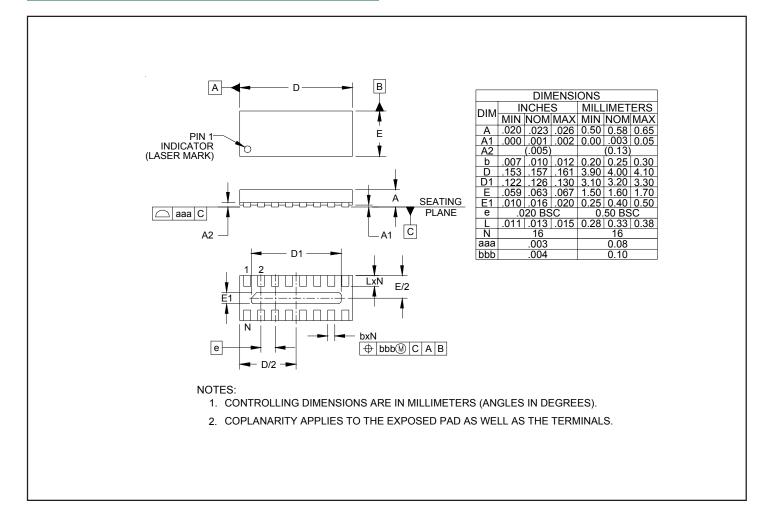



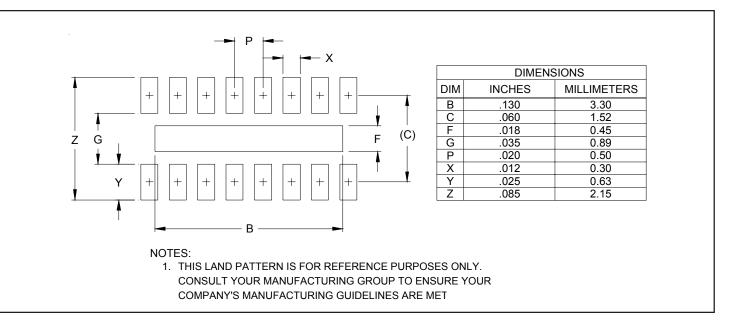

Figure 2 - Recommended Layout using Ground Vias

- The ESD transient return path to ground should be kept as short as possible. Whenever possible, use multiple micro vias connected directly from the device ground pad to the ground plane.
- Avoid running critical signals near board edges.

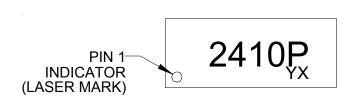


Applications Information


Applications Information - Spice Model

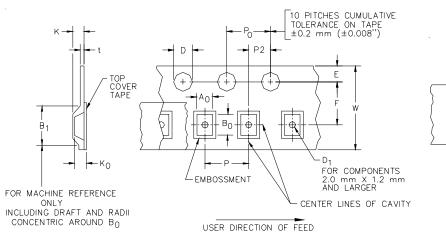

EClamp2410P Spice Parameters							
Parameter	Unit	D1 (TVS)					
IS	Amp	2E-15					
BV	Volt	7.46					
VJ	Volt	0.777					
RS	Ohm	1.00					
IBV	Amp	1E-3					
CJO	Farad	10E-12					
TT	sec	2.541E-9					
M		0.246					
N		1.1					
EG	eV	1.11					

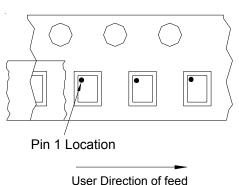
Outline Drawing - SLP4016P16



Land Pattern - SLP4016P16

Marking




Ordering Information

Part Number	Qty per Reel	Reel Size		
EClamp2410P.TCT	3000	7 Inch		

EMIClamp and EClamp are marks of Semtech Corporation

Tape and Reel Specification

Device Orientation in Tape

AO	ВО	ко		
1.78 +/-0.10 mm	4.30 +/-0.10 mm	0.74 +/-0.10 mm		

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Р	PO	P2	T(MAX)	W
12 mm	8.2 mm (.476)	1.5 + 0.1 mm - 0.0 mm (0.59 +.005 000)	1.0 mm ±0.05 (.039)	1.750±.10 mm (.069±.004)	5.5±0.05 mm (.217±.002)	4.5 mm (.177)	4.0±0.1 mm (.157±.00- 4)	4.0±0.1 mm (.157±.00- 4)	2.0±0.05m- m (.079±.002)	0.4 mm (.016)	12.0 mm + 0.3 mm - 0.1 mm (.472±.012)

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Semtech:

ECLAMP2410P.TCT