DATA SHEET

 THIUK FILM GUIP RIESETOMS AUTOMOTIUE ERADIEAC series
$\pm 5 \%, \pm 1 \%, \pm 0.5 \%$
Sizes 020I/0402/0603/0805/I206/
|210/12|8/2010/25|2
RoHS compliant \& Halogen free

YACEO
Phicomp

SCOPE

This specification describes ACO20 to AC 25 I 2 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Products with lead-free terminations meet RoHS requirements
- Pb -glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERNNG INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X $\underline{X} \underline{\mathbf{X X X}} \underline{\mathbf{X X X X}} \underline{\underline{L}}$
(1) (2) (3) (4) (5) (6) (7)
(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512
(2) TOLERANCE
$D= \pm 0.5 \% \quad J= \pm 5 \%$ (for Jumper ordering, use code of J)
$F= \pm 1 \%$
(3) PACKAGING TYPE

$$
R=\text { Paper taping reel } \quad K=\text { Embossed taping reel }
$$

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(5) TAPING REEL
$07=7$ inch dia. Reel $\quad 10=10$ inch dia. Reel
$13=13$ inch dia. Reel $\quad 7 \mathrm{~W}=7$ inch dia. Reel $\& 2 \times$ standard power
$3 \mathrm{~W}=13$ inch dia. Reel $\& 2 \times$ standard power
(6) RESISTANCE VALUE
1Ω to $22 \mathrm{M} \Omega$
There are $2 \sim 4$ digits indicated the resistance value. Letter $R / K / M$ is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.
Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number'.
(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rul number Resistance coding rule	global part Example
$\begin{aligned} & X R X X \\ & (1 \text { to } 9.76 \Omega) \end{aligned}$	$\begin{array}{r} \mathrm{IR}=1 \Omega \\ \mathrm{IR} 5=1.5 \Omega \\ 9 \mathrm{R} 76=9.76 \Omega \end{array}$
$\begin{aligned} & X X R X \\ & (10 \text { to } 97.6 \Omega) \end{aligned}$	$\begin{array}{r} 10 \mathrm{R}=10 \Omega \\ 97 \mathrm{R} 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$\begin{aligned} 100 R & =100 \Omega \\ 976 R & =976 \Omega \end{aligned}$
$\begin{aligned} & \mathrm{XKXX} \\ & (\mathrm{I} \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{aligned} 1 K & =1,000 \Omega \\ 9 K 76 & =9760 \Omega \end{aligned}$
$\begin{aligned} & \text { XMXX } \\ & (\text { I to } 9.76 \mathrm{M} \Omega \text {) } \end{aligned}$	$\begin{array}{r} 1 M=1,000,000 \Omega \\ 9 M 76=9,760,000 \Omega \end{array}$
$\begin{aligned} & \text { XXMX } \\ & (10 \mathrm{M} \Omega) \end{aligned}$	$10 M=10,000,000 \Omega$

Ordering example

The ordering code for an AC0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm 1 \%$ tolerance, supplied in 7 -inch tape reel is: AC0402FR-07I00KL.

NOTE

I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
2. On customized label, "LFP" or specific symbol can be printed.
3. AC series with $\pm 0.5 \%$ tolerance is also available. For further information, please contact sales.

Fig. 1
AC0603 / AC0805 / ACI206 / ACI2I0 / AC20I0 / AC25I2

吗

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3rd digit for number of zeros
Fig. 2 Value $=10 \mathrm{~K} \Omega$

AC0603

$24 \square$
 E-24 series: 3 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
 One short bar under marking letter

Fig. $3 \quad$ Value $=24 \Omega$
| 1 [
E-96 series: 3 digits, $\pm 1 \%$ \& $\pm 0.5 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. $4 \quad$ Value $=12.4 \mathrm{~K} \Omega$
AC0805 / ACl206 / ACl210 / AC2010 / AC25I2

102 Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
First three digits for significant figure and 4th digit for number of zeros
Fig. 5 Value $=10 \mathrm{~K} \Omega$
ACl218

[1]

Fig. 6 Value $=10 \mathrm{~K} \Omega$

Fig. 7 Value $=10 \mathrm{~K} \Omega$

Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
First three digits for significant figure and 4 th digit for number of zeros
E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3 rd digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.

CONSTRUSTION

The resistors are constructed on top of antomotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass.
The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} / \mathrm{matte}$ tin) are added, as shown in Fig.8.

OUTLINES

Fig. 8_I Chip resistor outlines

Fig. 8_2 AC20I0/25I2 double power chip resistor outlines

DJMENSIONS

Table I For outlines, please refer to Fig. 9

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{I}_{1}(\mathrm{~mm})$	$\mathrm{I}_{2}(\mathrm{~mm})$
AC0201	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AC0402	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AC0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AC0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
ACI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
ACI210	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
ACI218	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AC2010	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.50 ± 0.20
AC2512	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20

For dimension, please refer to Table I $\mathrm{AC0201/0402}$

ELEGTRJCAL CHARACTERISTJCS

Table 2

		CHARACTERISTICS						
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria

AC0201	$1 / 20 \mathrm{~W}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	25V	50V	50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 10 M \Omega$	$-100 /+350 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	0.5 A
						1\% (E24/E96)	$10 \Omega<R \leq 10 M$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	Current
						0.5\% (E24/E96)		1.0A
						$10 \Omega \leq R \leq 1 M \Omega$		
						Jumper $<50 \mathrm{~m} \Omega$		
AC0402	1/16 W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	50V	I OOV	IOOV	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	IA
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega$	2A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	I/8W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ \quad 155^{\circ} \mathrm{C} \end{array}$	50V	I OOV	IOOV	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC0603	I/IO W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ \quad 155^{\circ} \mathrm{C} \end{array}$	75V	150 V	I50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	IA
						0.5\%, 1\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	Maximum
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper<50m Ω	$10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega$	2 A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	$1 / 5 \mathrm{~W}$		75V	I50V	I50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C}$ to				$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range		Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AC0805	I/8 W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ \quad 155^{\circ} \mathrm{C} \end{array}$	I 50V	300 V	300 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2A
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega$	5A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	I/4W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	I50V	300 V	300 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
ACI206	$1 / 4 \mathrm{~W}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200 V	400 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2A
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega$	IOA
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	$1 / 2 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to$155^{\circ} \mathrm{C}$	200 V	400 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
ACI210	$1 / 2 \mathrm{~W}$		200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2A
		$-55^{\circ} \mathrm{C}$ to				0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
		$155^{\circ} \mathrm{C}$				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 \mathrm{M} \Omega<R \leq 22 M \Omega$	10A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	IW		200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C} \text { to }$				$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
ACI218	IW	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq I M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	6A
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 1 M \Omega$	Maximum
						$1 \Omega \leq R \leq I M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$		10A
	1.5W	$-55^{\circ} \mathrm{C}$ to$155^{\circ} \mathrm{C}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq I M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
						0.5\%, 1\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 1 \mathrm{M} \Omega$	
						$I \Omega \leq R \leq I M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC2010	$3 / 4 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to$155^{\circ} \mathrm{C}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2A
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 M \Omega<R \leq 22 M \Omega$	10A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	1.25 W		200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C}$ to				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, 1\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC25I2	I W		200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2 A
		$-55^{\circ} \mathrm{C}$ to				0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
		$155{ }^{\circ} \mathrm{C}$				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 \mathrm{M} \Omega<R \leq 22 \mathrm{M} \Omega$	10A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	2 W		200 V	400 V	500V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C}$ to				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
		$155{ }^{\circ} \mathrm{C}$				0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

FOOTPRJNT AND SOLDERJNG PROFLES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGJNG QUANTJTY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0201	AC0402	AC0603	AC0805	ACI206	ACI2IO	ACl218	AC2010	AC2512
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000	---	---	---
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000	---	---	---
	$13^{\prime \prime}(330 \mathrm{~mm})$	50,000	50,000	20,000	20,000	20,000	20,000	---	---	---
Embossed taping reel (K)	7" (178 mm)	---	---	---	---	---	---	4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$
AC020I=I/20W (0.05W)
AC0402 $=1 / 16 \mathrm{~W}(0.0625 \mathrm{~W}) ; 1 / 8 \mathrm{~W}(0.125 \mathrm{~W})$
AC0603 $=1 / 10 \mathrm{~W}(0.1 \mathrm{~W}) ; 1 / 5 \mathrm{~W}(0.2 \mathrm{~W})$
AC0805 $=1 / 8 \mathrm{~W}(0.125 \mathrm{~W}) ; 1 / 4 \mathrm{~W}(0.25 \mathrm{~W})$
ACI 206=I/4W (0.25W); 1/2 W (0.5 W)
ACI2IO=I/2W (0.5W); IW
ACI218=IW; I.5W
AC2010 $=3 / 4 \mathrm{~W}(0.75 \mathrm{~W}) ; 1.25 \mathrm{~W}$
AC25I2=I W; 2W

RAted voltage

The DC or AC (rms) continuous working voltage

Fig. I0 Maximum dissipation ($\mathrm{P}_{\max }$) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\mathrm{amb}}$) corresponding to the rated power is determined by the following formula:

$$
\begin{aligned}
& V=\sqrt{(P \times R)} \\
& \text { Or Maximum working voltage whichever is less }
\end{aligned}
$$

Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working
voltage (V)
P = Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REQUNREMENTS

Table 4 Test condition, procedure and requirements

	TEST METHOD	PROCEDURE	REQUIREMENTS
TEST		I,000 hours at $T_{A}=155^{\circ} \mathrm{C}$, unpowered	$\pm(1.0 \%+0.05 \Omega)$ for D/F tol
Exposure	MEC-Q200 Test 3		$\pm(2.0 \%+0.05 \Omega)$ for J tol
	MIL-STD-202 Method I08		$<50 \mathrm{~m} \Omega$ for Jumper

Biased	AEC-Q200 Test 7	1,000 hours; $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$
Humidity	MIL-STD-202 Method 103	10% of operating power
		Measurement at 24 ± 4 hours after test conclusion.

Operational Life	AEC-Q200 Test 8	$I, 000$ hours at $125^{\circ} \mathrm{C}$, derated voltage applied for	$\pm(1.0 \%+0.05 \Omega)$ for D / F tol
	MIL-STD-202 Method 108	1.5 hours on, 0.5 hour off, still-air required	$\pm(3.0 \%+0.05 \Omega)$ for J tol
		$<100 \mathrm{~m} \Omega$ for Jumper	

Resistance to	AEC-Q200 Test I5	Condition B, no pre-heat of samples	
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1$ seconds immersion time	$\pm(1.0 \%+0.05 \Omega)$ for J tol

Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	$-55 /+125^{\circ} \mathrm{C}$ Number of cycles is 300 . Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air	$\pm(0.5 \%+0.05 \Omega)$ for D / F tol $\pm(1.0 \%+0.05 \Omega)$ for J tol $<50 \mathrm{~m} \Omega$ for Jumper
ESD	AEC-Q200 Test 17	Human Body Model,	$\pm(3.0 \%+0.05 \Omega)$
	AEC-Q200-002	$I_{\text {pos. }}+I_{\text {neg. discharges }}$	$<50 \mathrm{~m} \Omega$ for Jumper
		0201: 500V	
		0402/0603: IKV	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	AEC-Q200 Test I8	Electrical Test not required Magnification 50 X	Well tinned ($\geq 95 \%$ covered)
- Wetting	J-STD-002	SMD conditions:	No visible damage
	(a) Method B, aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat,		
	dipping at $235 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.		
	(b) Method B, steam aging 8 hours, dipping at		
	$215 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.		
	(c) Method D, steam aging 8 hours, dipping at		
	$260 \pm 3^{\circ} \mathrm{C}$ for 7 ± 0.5 seconds.		

Board Flex	AEC-Q200 Test 21	Chips mounted on a 90 mm glass epoxy resin	$\pm(1.0 \%+0.05 \Omega)$
	AEC-Q200-005	PCB (FR4)	$<50 \mathrm{~m} \Omega$ for Jumper
		Bending for 0201/0402: 5 mm	
		0603/0805: 3 mm	
		1206 and above: 2 mm	
		Holding time: minimum 60 seconds	

Temperature	MIL-STD-202 Method 304	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of			
Resistance (T.C.R.)			
		Formula:	
		$\mathrm{T} . \mathrm{C} . \mathrm{R}=\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{R_{1}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	
		Where $t_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature	
		$t_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature	
		$\mathrm{R}_{\mathrm{I}}=$ resistance at reference temperature in ohms	
		$\mathrm{R}_{2}=$ resistance at test temperature in ohms	

| Short Time | IEC60\|I5-| 4.13 | 2.5 times of rated voltage or maximum |
| :--- | :--- | :--- |
| Overload | | $\pm(1.0 \%+0.05 \Omega)$ for D / F tol |
| | overload voltage whichever is less for 5 sec | $\pm(2.0 \%+0.05 \Omega)$ for ltol |
| at room temperature | $<50 \mathrm{~m} \Omega$ for Jumper | |

FOS ASTM-B-809-95 | Sulfur (saturated vapor) 500 hours, $60 \pm 2^{\circ} \mathrm{C}$, | $\pm(1.0 \%+0.05 \Omega)$ |
| :--- | :--- |
| unpowered | |

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel \& double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing - Extend resistance range - Add in ACO20 I - Update FOS test and requirements
Version 3	Feb 13, 2014	-	- Feature description updated - add $\pm 0.5 \%$ - delete 10 " taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added - ACI2I8 marking and outline figure updated
Version I	Feb. 01, 2011	-	- Case size $1210,1218,2010,2512$ extended - Test method and procedure updated - Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAJMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Yageo:
AC2512FK-7W30KL AC2512DK-0747RL AC2512FK-7W590KL AC2010FK-7W330KL AC1206FR-07549KL AC2010FK-07169RL AC2010FK-7W825KL AC2512JK-071K2L AC2512JK-0782RL AC2010FK-071M3L AC2010JK075R1L AC2010JK-076R2L AC2010FK-0712KL AC2010FK-0761R9L AC2512FK-7W4K7L AC2512FK-7W43K2L AC2010FK-073K6L AC2512FK-7W1K78L AC2010JK-0713RL AC2512FK-073M9L AC2512JK-0730RL AC2512FK-
7W237KL AC2512FK-7W10KL AC0805FR-074R02L AC2010FK-0710ML AC0805JR-7W1R5L AC2010FK-7W5K11L AC1210JR-074M7L AC0603DRE073K3L AC1210FR-13140RL AC2512FK-7W243KL AC0805FR-0711K8L AC1206FR-10270RL AC2512JK-073R3L AC2010FK-071K15L AC1206JR-7W100RL AC2512JK-0751KL AC1210FR7W60R4L AC1210JR-07390KL AC0805FR-139K1L AC2010JK-7W100KL AC1206FR-7W47KL AC1206FR-0718R2L AC2512FK-7W68KL AC2512FK-073K9L AC2512FK-7W332KL AC2512FK-07620KL AC0603DRE07120RL AC2010FK-7W68K1L AC2512JK-075M6L AC2512FK-0786K6L AC2010FK-074K7L AC2010FK-7W196KL AC2512FK-7W909RL AC2010JK-073R6L AC2512JK-074R3L AC2010FK-7W680KL AC1210FR-07180KL AC0805FR-7W47KL AC0805FR-106K98L AC1218FK-077R5L AC0805JR-078M2L AC2010JK-0736RL AC0603JR7W4R7L AC2512JK-07560RL AC1210FR-074R64L AC2010FK-7W187KL AC0805JR-7W15KL AC1210FR-071R3L AC0603JR-102K2L AC2512JK-0724KL AC0603DRE071K1L AC1210JR-07180KL AC2512FK-7W1K5L AC2512FK7W620KL AC2512FK-7W147KL AC1210FR-078R06L AC2010FK-7W56K2L AC1210FR-0736K5L AC1210FR7W715RL AC2512FK-7W130RL AC2010FK-073R6L AC2512JK-7W7R5L AC1206FR-7W12R4L AC2010FK-0782KL AC2010FK-076K8L AC2010FK-7W200KL AC2010JK-073R9L AC2512FK-07340RL AC2512FK-7W12K7L AC2010FK-7W732RL AC2512JK-7W1K2L AC0402JR-7W6K8L AC2512FK-7W619KL AC2010JK-071M6L AC1218FK-0740K2L AC2512JK-071R5L AC2512JK-0768KL AC2010FK-7W475RL AC2512FK-7W7K5L

