TJA1021

ISO 17987/LIN 2.x/SAE J2602 transceiver

Rev. 8 — 18 December 2018

Product data sheet

1. General description

The TJA1021 is the interface between the Local Interconnect Network (LIN) master/slave protocol controller and the physical bus in a LIN. It is primarily intended for in-vehicle sub-networks using baud rates from 1 kBd up to 20 kBd (/20 variant) and is compliant with LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A, SAE J2602 and ISO 17987-4:2016 (12 V). The TJA1021 is pin-to-pin compatible with the TJA1020 and MC33662(B).

The transmit data stream of the protocol controller at the transmit data input (TXD) is converted by the TJA1021 into a bus signal with optimized slew rate and wave shaping to minimize ElectroMagnetic Emission (EME). The LIN bus output pin is pulled HIGH via an internal termination resistor. For a master application, an external resistor in series with a diode should be connected between pin INH or pin V_{BAT} and pin LIN. The receiver detects the data stream at the LIN bus input pin and transfers it via pin RXD to the microcontroller.

In Sleep mode, the power consumption of the TJA1021 is very low. In failure modes, the power consumption is reduced to a minimum.

2. Features and benefits

2.1 General

- LIN 2.x/ISO 17987-4:2016 (12 V)/SAE J2602 compliant
- Baud rate up to 20 kBd (/20 variant)
- Very low ElectroMagnetic Emission (EME)
- High ElectroMagnetic Immunity (EMI)
- Passive behavior in unpowered state
- Input levels compatible with 3.3 V and 5 V devices
- Integrated termination resistor for LIN slave applications
- Wake-up source recognition (local or remote)
- K-line compatible
- Pin-to-pin compatible with TJA1020 and MC33662(B)
- Available in SO8 and HVSON8 packages
- Leadless HVSON8 package (3.0 mm × 3.0 mm) with low thermal resistance supporting Automated Optical Inspection (AOI) capability

2.2 Low power management

Very low current consumption in Sleep mode with local and remote wake-up

TJA1021

2.3 Protection mechanisms

- High ESD robustness: ±6 kV according to IEC 61000-4-2 for pins LIN, V_{BAT} and WAKE_N
- Transmit data (TXD) dominant time-out function
- Bus terminal and battery pin protected against transients in the automotive environment (ISO 7637)
- Bus terminal short-circuit proof to battery and ground
- Thermally protected

3. Quick reference data

Table 1.Quick reference data

	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{BAT}	battery supply voltage	limiting value with respect to GND	-0.3	-	+40	V
I _{BAT} battery supply current	battery supply current	Sleep mode; $V_{LIN} = V_{BAT}$; $V_{WAKE_N} = V_{BAT}$ $V_{TXD} = 0 V$; $V_{SLP_N} = 0 V$	2	7	10	μA
		Standby mode; bus recessive $V_{INH} = V_{BAT}$; $V_{LIN} = V_{BAT}$; $V_{WAKE_N} = V_{BAT}$ $V_{TXD} = 0 V$; $V_{SLP_N} = 0 V$	150	450	1000	μA
		Standby mode; bus dominant $V_{BAT} = 12 V$; $V_{INH} = 12 V$; $V_{LIN} = 0 V$ $V_{WAKE_N} = 12 V$; $V_{TXD} = 0 V$; $V_{SLP_N} = 0 V$	300	800	1200	μA
		Normal mode; bus recessive $V_{INH} = V_{BAT}$; $V_{LIN} = V_{BAT}$; $V_{WAKE_N} = V_{BAT}$ $V_{TXD} = 5 V$; $V_{SLP_N} = 5 V$	300	800	1600	μA
		Normal mode; bus dominant $V_{BAT} = 12 V$; $V_{INH} = 12 V$; $V_{WAKE_N} = 12 V$ $V_{TXD} = 0 V$; $V_{SLP_N} = 5 V$	1	2	4	mA
V _{LIN}	voltage on pin LIN	limiting value with respect to GND, V_{BAT} and V_{WAKE_N}	-40	-	+40	V
T _{vi}	virtual junction temperature	limiting value	-40	-	+150	°C

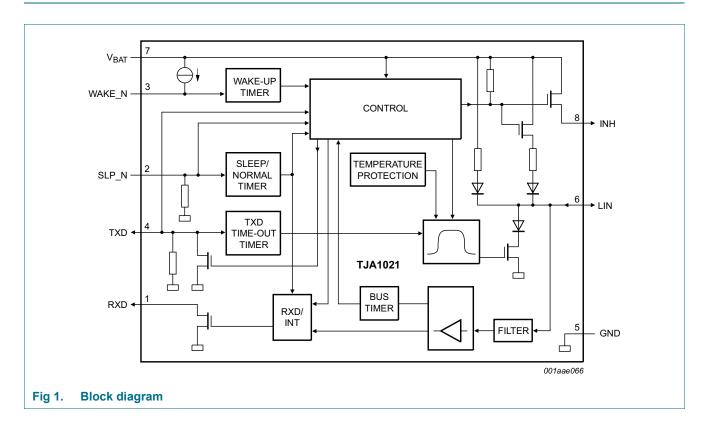
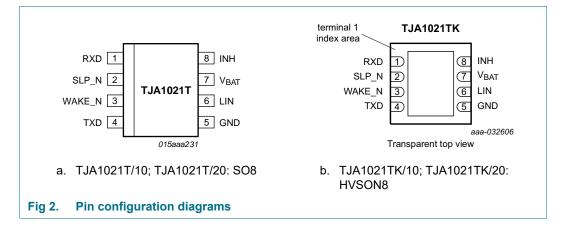

4. Ordering information

Table 2. Ordering information

Type number ^[1]	Package		
	Name	Description	Version
TJA1021T/10 TJA1021T/20	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
TJA1021TK/10 TJA1021TK/20	HVSON8	plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 3 \times 3 \times 0.85 mm	SOT782-1


[1] TJA1021T/10 and TJA1021TK/10: for the low slope version that supports baud rates up to 10.4 kBd (SAE J2602); TJA1021T/20 and TJA1021TK/20: for the normal slope version that supports baud rates up to 20 kBd.

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.Pin description

Pin	
	Description
1	receive data output (open-drain); active LOW after a wake-up event
2	sleep control input (active LOW); controls inhibit output; resets wake-up source flag on TXD and wake-up request on RXD
3	local wake-up input (active LOW); negative edge triggered
4	transmit data input; active LOW output after a local wake-up event
5 <u>[1]</u>	ground
6	LIN bus line input/output
7	battery supply voltage
8	battery related inhibit output for controlling an external voltage regulator; active HIGH after a wake-up event
	1 2 3 4 5[1] 6 7

[1] For enhanced thermal and electrical performance, solder the exposed center pad of the HVSON8 package to board ground.

Product data sheet

7. Functional description

The TJA1021 is the interface between the LIN master/slave protocol controller and the physical bus in a Local Interconnect Network (LIN). The TJA1021 is LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A, SAE J2602 and ISO 17987-4:2016 (12 V) compliant and provides optimum ElectroMagnetic Compatibility (EMC) performance due to wave shaping of the LIN output.

The LIN physical layer is independent of higher OSI model layers (e.g., the LIN protocol). Consequently, nodes containing an ISO 17987-compliant physical layer can be combined, without restriction, with LIN physical layer nodes that comply with earlier revisions (LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1, LIN 2.2 and LIN 2.2A).

The TJA1021T/20 and TJA1021TK/20 are optimized for the maximum specified LIN transmission speed of 20 kBd; the TJA1021T/10 and TJA1021TK/10 are optimized for the LIN transmission speed of 10.4 kBd as specified by the SAE J2602.

7.1 Operating modes

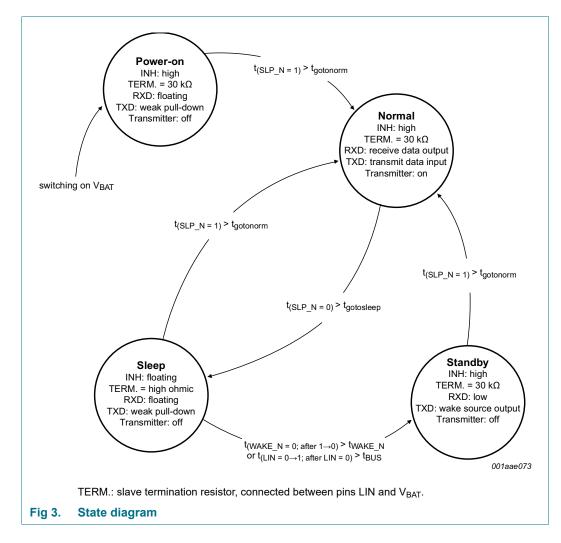
The TJA1021 supports modes for normal operation (Normal mode), power-up (Power-on mode) and very-low-power operation (Sleep mode). An intermediate wake-up mode between Sleep and Normal modes is also supported (Standby mode). Figure 3 shows the state diagram.

Mode	SLP_N	TXD (output)	RXD	INH	Transmitter	Remarks
Sleep mode	0	weak pull-down	floating	floating	off	no wake-up request detected
Standby ^[1] mode	0	weak pull-down if remote wake-up; strong pull-down if local wake-up ^[2]	LOW	HIGH	off	wake-up request detected; in this mode the microcontroller can read the wake-up source: remote or local wake-up
Normal mode	1	HIGH: recessive state LOW: dominant state	HIGH: recessive state LOW: dominant state	HIGH	Normal mode	<u>[2][3][4]</u>
Power-on mode	0	weak pull-down	floating	HIGH	off	[5]

Table 4. Operating modes

 Standby mode is entered automatically upon any local or remote wake-up event during Sleep mode. Pin INH and the 30 kΩ termination resistor at pin LIN are switched on.

[2] The internal wake-up source flag (set if a local wake-up did occur and fed to pin TXD) will be reset after a positive edge on pin SLP N.


[3] The wake-up interrupt (on pin RXD) is released after a positive edge on pin SLP_N.

[4] Normal mode is entered after a positive edge on SLP_N. As long as TXD is LOW, the transmitter is off. In the event of a short-circuit to ground on pin TXD, the transmitter will be disabled.

[5] Power-on mode is entered after switching on V_{BAT}.

ISO 17987/LIN 2.x/SAE J2602 transceiver

TJA1021

7.2 Sleep mode

This mode is the most power-saving mode of the TJA1021. Despite its extreme low current consumption, the TJA1021 can still be woken up remotely via pin LIN, or woken up locally via pin WAKE_N, or activated directly via pin SLP_N. Filters at the inputs of the receiver (LIN), of pin WAKE_N and of pin SLP_N prevent unwanted wake-up events due to automotive transients or EMI. All wake-up events must be maintained for a certain time period (twake(dom)LIN, twake(dom)WAKE_N and tgotonorm).

Sleep mode is initiated by a falling edge on pin SLP_N in Normal mode. To enter Sleep mode successfully (INH becomes floating), the sleep command (pin SLP_N = LOW) must be maintained for at least $t_{gotosleep}$.

In Sleep mode the internal slave termination between pins LIN and V_{BAT} is disabled to minimize the power dissipation in the event that pin LIN is short-circuited to ground. Only a weak pull-up between pins LIN and V_{BAT} is present.

Sleep mode can be activated independently from the actual level on pin LIN, pin TXD or pin WAKE_N. This guarantees that the lowest power consumption is achievable even in case of a continuous dominant level on pin LIN or a continuous LOW on pin WAKE_N.

When V_{BAT} drops below the power-on-reset threshold $V_{\text{th}(\text{POR})\text{L}},$ the TJA1021 enters Sleep mode.

7.3 Standby mode

Standby mode is entered automatically whenever a local or remote wake-up occurs while the TJA1021 is in Sleep mode. These wake-up events activate pin INH and enable the slave termination resistor at the pin LIN. As a result of the HIGH condition on pin INH the voltage regulator and the microcontroller can be activated.

Standby mode is signalled by a LOW-level on pin RXD which can be used as an interrupt for the microcontroller.

In Standby mode (pin SLP_N is still LOW), the condition of pin TXD (weak pull-down or strong pull-down) indicates the wake-up source: weak pull-down for a remote wake-up request and strong pull-down for a local wake-up request.

Setting pin SLP_N HIGH during Standby mode results in the following events:

- An immediate reset of the wake-up source flag; thus releasing the possible strong pull-down at pin TXD before the actual mode change (after t_{gotonorm}) is performed
- A change into Normal mode if the HIGH level on pin SLP_N has been maintained for a certain time period (t_{gotonorm})
- An immediate reset of the wake-up request signal on pin RXD

7.4 Normal mode

In Normal mode the TJA1021 is able to transmit and receive data via the LIN bus line. The receiver detects the data stream at the LIN bus input pin and transfers it via pin RXD to the microcontroller (see Figure 1): HIGH at a recessive level and LOW at a dominant level on the bus. The receiver has a supply-voltage related threshold with hysteresis and an integrated filter to suppress bus line noise. The transmit data stream of the protocol controller at the TXD input is converted by the transmitter into a bus signal with optimized slew rate and wave shaping to minimize EME. The LIN bus output pin is pulled HIGH via an internal slave termination resistor. For a master application an external resistor in series with a diode should be connected between pin INH or V_{BAT} on one side and pin LIN on the other side (see Figure 7).

When in Sleep, Standby or Power-up mode, the TJA1021 enters Normal mode whenever a HIGH level on pin SLP_N is maintained for a time of at least $t_{aotonorm}$.

The TJA1021 switches to Sleep mode in case of a LOW-level on pin SLP_N, maintained for a time of at least $t_{gotosleep}$.

7.5 Wake-up

When V_{BAT} exceeds the power-on-reset threshold voltage V_{th(POR)H}, the TJA1021 enters Power-on mode. Though the TJA1021 is powered-up and INH is HIGH, both the transmitter and receiver are still inactive. If SLP_N = 1 for t > t_{gotonorm}, the TJA1021 enters Normal mode.

There are three ways to wake-up a TJA1021 which is in Sleep mode:

1. Remote wake-up via a dominant bus state of at least twake(dom)LIN

- 2. Local wake-up via a negative edge at pin WAKE_N
- 3. Mode change (pin SLP_N is HIGH) from Sleep mode to Normal mode

7.6 Remote and local wake-up

A falling edge at pin LIN followed by a LOW level maintained for a certain time period $(t_{wake(dom)LIN})$ and a rising edge at pin LIN respectively (see <u>Figure 4</u>) results in a remote wake-up. It should be noted that the time period $t_{wake(dom)LIN}$ is measured either in Normal mode while TXD is HIGH, or in Sleep mode irrespective of the status of pin TXD.

A falling edge at pin WAKE_N followed by a LOW level maintained for a certain time period ($t_{wake(dom)WAKE_N}$) results in a local wake-up. The pin WAKE_N provides an internal pull-up towards pin V_{BAT}. In order to prevent EMI issues, it is recommended to connect an unused pin WAKE_N to pin V_{BAT}.

After a local or remote wake-up, pin INH is activated (it goes HIGH) and the internal slave termination resistor is switched on. The wake-up request is indicated by a LOW active wake-up request signal on pin RXD to interrupt the microcontroller.

7.7 Wake-up via mode transition

It is also possible to set pin INH HIGH with a mode transition towards Normal mode via pin SLP_N. This is useful for applications with a continuously powered microcontroller.

7.8 Wake-up source recognition

The TJA1021 can distinguish between a local wake-up request on pin WAKE_N and a remote wake-up request via a dominant bus state. 'A local wake-up request sets the wake-up source flag. The wake-up source can be read on pin TXD in the Standby mode. If an external pull-up resistor on pin TXD to the power supply voltage of the microcontroller has been added, a HIGH level indicates a remote wake-up request (weak pull-down at pin TXD) and a LOW level indicates a local wake-up request (strong pull-down at pin TXD; much stronger than the external pull-up resistor).

The wake-up request flag (signalled on pin RXD) as well as the wake-up source flag (signalled on pin TXD) are reset immediately after the microcontroller sets pin SLP_N HIGH.

7.9 TXD dominant time-out function

A TXD dominant time-out timer circuit prevents the bus line from being driven to a permanent dominant state (blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD. If the duration of the LOW-level on pin TXD exceeds the internal timer value ($t_{to(dom)TXD}$), the transmitter is disabled, driving the bus line into a recessive state. The timer is reset by a positive edge on pin TXD.

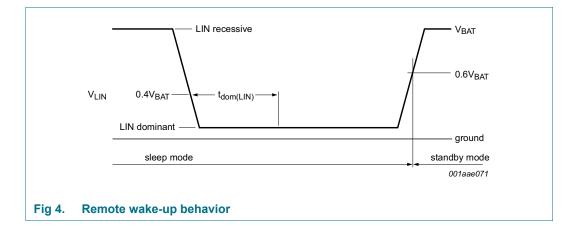
7.10 Fail-safe features

Pin TXD provides a pull-down to GND in order to force a predefined level on input pin TXD in case the pin TXD is unsupplied.

Pin SLP_N provides a pull-down to GND in order to force the transceiver into Sleep mode in case the pin SLP_N is unsupplied.

All information provided in this document is subject to legal disclaimers.

TJA1021


Pin RXD is set floating in case of lost power supply on pin V_{BAT}.

The current of the transmitter output stage is limited in order to protect the transmitter against short circuit to pins V_{BAT} or GND.

A loss of power (pins V_{BAT} and GND) has no impact on the bus line and the microcontroller. There are no reverse currents from the bus. The LIN transceiver can be disconnected from the power supply without influencing the LIN bus.

The output driver at pin LIN is protected against overtemperature conditions. If the junction temperature exceeds the shutdown junction temperature $T_{j(sd)}$, the thermal protection circuit disables the output driver. The driver is enabled again when the junction temperature has dropped below $T_{i(sd)}$ and a recessive level is present at pin TXD.

If V_{BAT} drops below $V_{th(VBATL)L}$, a protection circuit disables the output driver. The driver is enabled again when $V_{BAT} > V_{th(VBATL)H}$ and a recessive level is present at pin TXD.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to pin GND; unless otherwise specified. Positive currents flow into the IC.

Parameter	Conditions		Min	Мах	Unit
					V
voltage on pin TXD				+6	V
	I _{TXD} < 500 μA		-0.3	+7	V
voltage on pin RXD	I _{RXD} no limitation		-0.3	+6	V
	I _{RXD} < 500 μA		-0.3	+7	V
voltage on pin SLP_N	I _{SLP_N} no limitation		-0.3	+6	V
	I _{SLP_N} < 500 μA		-0.3	+7	V
voltage on pin LIN	with respect to GND, V_{BAT} and V_{WAKE_N}		-40	+40	V
voltage on pin WAKE_N			-0.3	+40	V
current on pin WAKE_N	only relevant if V _{WAKE_N} < V _{GND} – 0.3 current will flow into pin GND		–15	-	mA
voltage on pin INH			-0.3	V _{BAT} +0.3	V
output current on pin INH			-50	+15	mA
electrostatic discharge voltage					
according to IEC 61000-4-2	on pins WAKE_N, LIN and V _{BAT}	[1]	-6	+6	kV
human body model	on pins WAKE_N, LIN, V _{BAT} and INH	[2]	-8	+8	kV
	on pins RXD, SLP_N and TXD	[2]	-2	+2	kV
charge device model	all pins		-750	+750	V
machine model	all pins	[3]	-200	+200	V
virtual junction temperature		[4]	-40	+150	°C
storage temperature			-55	+150	°C
	voltage on pin SLP_N voltage on pin LIN voltage on pin WAKE_N current on pin WAKE_N voltage on pin INH output current on pin INH electrostatic discharge voltage according to IEC 61000-4-2 human body model charge device model machine model virtual junction temperature	battery supply voltage with respect to GND voltage on pin TXD I _{TXD} no limitation I _{TXD} < 500 μA	battery supply voltage with respect to GND voltage on pin TXD I _{TXD} no limitation I _{TXD} < 500 µA	battery supply voltagewith respect to GND-0.3voltage on pin TXD I_{TXD} no limitation-0.3 $I_{TXD} < 500 \ \mu A$ -0.3voltage on pin RXD I_{RXD} no limitation-0.3 $I_{RXD} < 500 \ \mu A$ -0.3voltage on pin SLP_N $I_{RXD} < 500 \ \mu A$ -0.3voltage on pin SLP_N $I_{SLP_N} \ no limitation$ -0.3voltage on pin LINwith respect to GND, V_BAT and V_WAKE_N-40voltage on pin WAKE_N-0.3-0.3current on pin WAKE_Nonly relevant if $V_{WAKE_N} < V_{GND} - 0.3$ -15current on pin INH-0.3-15output current on pin INH-0.3-0.3electrostatic discharge voltageon pins WAKE_N, LIN and V_BAT11 -6human body modelon pins WAKE_N, LIN, V_BAT and INH21 -2charge device modelall pins-750machine modelall pins13 -200virtual junction temperatureúl -40	battery supply voltage with respect to GND -0.3 +40 voltage on pin TXD I _{TXD} no limitation -0.3 +6 I _{TXD} 500 µA -0.3 +7 voltage on pin RXD I _{RXD} no limitation -0.3 +6 I _{RXD} 500 µA -0.3 +7 voltage on pin SLP_N I _{SLP_N} no limitation -0.3 +7 voltage on pin LIN Vib respect to GND, V _{BAT} and V _{WAKE_N} -0.3 +7 voltage on pin LIN with respect to GND, V _{BAT} and V _{WAKE_N} -40 +40 voltage on pin WAKE_N only relevant if V _{WAKE_N} < V _{GND} - 0.3 -15 - voltage on pin INH -0.3 +40 - - voltage on pin INH -0.3 -15 - - voltage on pin INH -0.3 -0.3 +15 - electrostatic discharge voltage on pins WAKE_N, LIN and V _{BAT} -0.3 +15 electrostatic discharge voltage on pins WAKE_N, LIN, V _{BAT} and INH 12 -8 +8 on pins RXD, SLP_N and TXD 12 -2

[1] Equivalent to discharging a 150 pF capacitor through a 330 Ω resistor; verified by an external test house.

[2] Equivalent to discharging a 100 pF capacitor through a 1.5 k Ω resistor.

[3] Equivalent to discharging a 200 pF capacitor through a 10 Ω resistor and a 0.75 μ H coil.

[4] Junction temperature in accordance with IEC 60747-1. An alternative definition is: $T_j = T_{amb} + P \times R_{th(j-a)}$, where $R_{th(j-a)}$ is a fixed value. The rating for T_{vj} limits the allowable combinations of power dissipation (P) and ambient temperature (T_{amb}).

9. Thermal characteristics

Table 6.Thermal characteristics

According to IEC 60747-1.

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	SO8 package; in free air	145	K/W
		HVSON8 package; in free air	50	K/W

10. Static characteristics

Table 7. Static characteristics

 V_{BAT} = 5.5 V to 27 V; T_{vj} = -40 °C to +150 °C; $R_{L(LIN-VBAT)}$ = 500 Ω ; all voltages are defined with respect to ground; positive currents flow into the IC; typical values are given at V_{BAT} = 12 V; unless otherwise specified.^[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
I _{BAT}	battery supply current	Sleep mode $V_{LIN} = V_{BAT}; V_{WAKE_N} = V_{BAT}$ $V_{TXD} = 0 V; V_{SLP_N} = 0 V$	2	7	10	μΑ
		Standby mode; bus recessive $V_{INH} = V_{BAT}$; $V_{LIN} = V_{BAT}$ $V_{WAKE_N} = V_{BAT}$; $V_{TXD} = 0 V$ $V_{SLP_N} = 0 V$	150	450	1000	μΑ
		Standby mode; bus dominant $V_{BAT} = 12 V$; $V_{INH} = 12 V$ $V_{LIN} = 0 V$; $V_{WAKE_N} = 12 V$ $V_{TXD} = 0 V V_{SLP_N} = 0 V$	300	800	1200	μΑ
		Normal mode; bus recessive $V_{INH} = V_{BAT}$; $V_{LIN} = V_{BAT}$ $V_{WAKE_N} = V_{BAT}$; $V_{TXD} = 5 V$ $V_{SLP_N} = 5 V$	300	800	1600	μA
		Normal mode; bus dominant $V_{BAT} = 12 V$; $V_{INH} = 12 V$ $V_{WAKE_N} = 12 V$; $V_{TXD} = 0 V$ $V_{SLP_N} = 5 V$	1	2	4	mA
Power-on re	eset					
V _{th(POR)L}	LOW-level power-on reset threshold voltage	power-on reset	1.6	3.1	3.9	V
V _{th(POR)H}	HIGH-level power-on reset threshold voltage		2.3	3.4	4.3	V
V _{hys(POR)}	power-on reset hysteresis voltage		0.05	0.3	1	V
$V_{th(VBATL)L}$	LOW-level V _{BAT} LOW threshold voltage		3.9	4.4	4.7	V
$V_{th(VBATL)H}$	HIGH-level V _{BAT} LOW threshold voltage		4.2	4.7	4.9	V
$V_{hys(VBATL)}$	V _{BAT} LOW hysteresis voltage		0.05	0.3	1	V
Pin TXD						
V _{IH}	HIGH-level input voltage		2	-	7	V
V _{IL}	LOW-level input voltage		-0.3	-	+0.8	V
V _{hys}	hysteresis voltage		50	200	400	mV
R _{PD(TXD)}	pull-down resistance on pin TXD	V _{TXD} = 5 V	140	500	1200	kΩ
I _{IL}	LOW-level input current	V _{TXD} = 0 V	-5	-	+5	μA
I _{OL}	LOW-level output current	local wake-up request Standby mode; V _{WAKE_N} = 0 V V _{LIN} = V _{BAT} ; V _{TXD} = 0.4 V	1.5	-	-	mA

 $V_{\text{LIN}} = V_{\text{BAT}}; V_{\text{TXD}} = 0.\overline{4} \text{ V}$

Table 7. Static characteristics ...continued

 V_{BAT} = 5.5 V to 27 V; T_{vj} = -40 °C to +150 °C; $R_{L(LIN-VBAT)}$ = 500 Ω ; all voltages are defined with respect to ground; positive currents flow into the IC; typical values are given at V_{BAT} = 12 V; unless otherwise specified.^[1]

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Pin SLP_N							
V _{IH}	HIGH-level input voltage			2	-	7	V
V _{IL}	LOW-level input voltage			-0.3	-	+0.8	V
V _{hys}	hysteresis voltage			50	200	400	mV
$R_{PD(SLP_N)}$	pull-down resistance on pin SLP_N	$V_{SLP_N} = 5 V$		140	500	1200	kΩ
IIL	LOW-level input current	$V_{SLP_N} = 0 V$		-5	0	+5	μA
Pin RXD (ope	en-drain)						
I _{OL}	LOW-level output current	Normal mode $V_{LIN} = 0 V; V_{RXD} = 0.4 V$		1.5	-	-	mA
I _{LH}	HIGH-level leakage current	Normal mode V _{LIN} = V _{BAT} ; V _{RXD} = 5 V		-5	0	+5	μA
Pin WAKE_N							
V _{IH}	HIGH-level input voltage			$V_{BAT}-1$	-	V _{BAT} + 0.3	V
VIL	LOW-level input voltage			-0.3	-	$V_{BAT}-3.3$	V
I _{pu(L)}	LOW-level pull-up current	$V_{WAKE_N} = 0 V$		-30	-12	-1	μA
I _{LH}	HIGH-level leakage current	V_{WAKE_N} = 27 V; V_{BAT} = 27 V		-5	0	+5	μA
Pin INH							
R _{sw(VBAT-INH)}	switch-on resistance between pins V_{BAT} and INH	Standby; Normal and Power-on modes; $I_{\rm INH}$ = –15 mA $V_{\rm BAT}$ = 12 V		-	20	50	Ω
I _{LH}	HIGH-level leakage current	Sleep mode V _{INH} = 27 V; V _{BAT} = 27 V		-5	0	+5	μA
Pin LIN							
I _{BUS_LIM}	current limitation for driver dominant state	V _{BAT} = 18 V; V _{LIN} = 18 V V _{TXD} = 0 V		40	-	100	mA
R _{pu}	pull-up resistance	Sleep mode; $V_{SLP_N} = 0 V$		50	160	250	kΩ
I _{BUS_PAS_rec}	receiver recessive input leakage current	V _{LIN} = 27 V; V _{BAT} = 5.5 V V _{TXD} = 5 V		-	-	1	μA
I _{BUS_PAS_dom}	receiver dominant input leakage current including pull-up resistor	Normal mode; V_{TXD} = 5 V V _{LIN} = 0 V; V _{BAT} = 12 V		-600	-	-	μA
V _{SerDiode}	voltage drop at the serial diode	in pull-up path with R _{slave} I _{SerDiode} = 10 μA	[2]	0.4	-	1.0	V
I _{BUS_NO_GND}	loss-of-ground bus current	V _{BAT} = 27 V; V _{LIN} = 0 V		-750	-	+10	μA
BUS_NO_BAT	loss-of-battery bus current	V _{BAT} = 0 V; V _{LIN} = 27 V		-	-	1	μA
V _{BUSdom}	receiver dominant state			-	-	$0.4V_{\text{BAT}}$	V
V _{BUSrec}	receiver recessive state			$0.6V_{BAT}$	-	-	V
V _{BUS_CNT}	receiver center voltage	V _{BUS_CNT} = (V _{BUSrec} + V _{BUSdom}) / 2		0.475V _{BAT}	$0.5V_{BAT}$	0.525V _{BAT}	V
V _{HYS}	receiver hysteresis voltage	V_{HYS} = $V_{BUSrec} - V_{BUSdom}$		-	-	0.175V _{BAT}	V
R _{slave}	slave resistance	connected between pins LIN and V_{BAT}; V_{LIN} = 0 V; V_{BAT} = 12 V		20	30	47	kΩ

Product data sheet

Table 7. Static characteristics ... continued

 V_{BAT} = 5.5 V to 27 V; T_{vj} = -40 °C to +150 °C; $R_{L(LIN-VBAT)}$ = 500 Ω ; all voltages are defined with respect to ground; positive currents flow into the IC; typical values are given at V_{BAT} = 12 V; unless otherwise specified.^[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{LIN}	capacitance on pin LIN		[2] _	-	30	pF
V _{o(dom)}	dominant output voltage	Normal mode; V_{TXD} = 0 V V _{BAT} = 7.0 V	-	-	1.4	V
		Normal mode; V _{TXD} = 0 V V _{BAT} = 18 V	-	-	2.0	V
Thermal sh	nutdown					
T _{j(sd)}	shutdown junction temperature		<u>[2]</u> 150	175	200	°C

All parameters are guaranteed over the virtual junction temperature range by design. Factory testing uses correlated test conditions to [1] cover the specified temperature and power supply voltage range.

Not tested in production; guaranteed by design. [2]

11. Dynamic characteristics

Table 8. **Dynamic characteristics**

 V_{BAT} = 5.5 V to 18 V; T_{vj} = -40 °C to +150 °C; $R_{L(LIN-VBAT)}$ = 500 Ω ; all voltages are defined with respect to ground; positive currents flow into the IC; typical values are given at V_{BAT} = 12 V; see Figure 6; unless otherwise specified.[1]

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Duty cycles							
δ1	duty cycle 1		<u>[2][3][4][7]</u>	0.396	-	-	
			<u>[2][3][4][7]</u>	0.396	-	-	
δ2	duty cycle 2		<u>[2][4][5][7]</u>	-	-	0.581	
			<u>[2][4][5][7]</u>	-	-	0.581	
δ3 duty cycle 3	duty cycle 3		<u>[3][4][7]</u>	0.417	-	-	
			<u>[3][4][7]</u>	0.417	-	-	
δ4	duty cycle 4		<u>[4][5][7]</u>	-	-	0.590	
			<u>[4][5][7]</u>	-	-	0.590	
Timing character	ristics						
t _f	fall time		[2][4]	-	-	22.5	μs
rJA1021		All information provided in this document is subject to legal disclaimers.			© NXP I	B.V. 2018. All r	ights reserved
Product data sheet		Rev. 8 — 18 December 2018					13 of 2

Table 8. Dynamic characteristics ...continued

 $V_{BAT} = 5.5 \text{ V}$ to 18 V; $T_{vj} = -40 \text{ }^{\circ}\text{C}$ to +150 $^{\circ}\text{C}$; $R_{L(LIN-VBAT)} = 500 \Omega$; all voltages are defined with respect to ground; positive currents flow into the IC; typical values are given at $V_{BAT} = 12 \text{ V}$; see <u>Figure 6</u>; unless otherwise specified.[1]

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
t _r	rise time		<u>[2][4]</u>	-	-	22.5	μs
$\Delta t_{(r-f)}$	difference between rise and fall time	V _{BAT} = 7.3 V	<u>[2][4]</u>	-5	-	+5	μs
t _{tx_pd}	transmitter propagation delay	rising and falling	[2]	-	-	6	μs
t _{tx_sym}	transmitter propagation delay symmetry		<u>[2]</u>	-2.5	-	+2.5	μs
t _{rx_pd}	receiver propagation delay	rising and falling	<u>[6]</u>	-	-	6	μs
t _{rx_sym}	receiver propagation delay symmetry		<u>[6]</u>	-2	-	+2	μs
t _{wake(dom)LIN}	LIN dominant wake-up time	Sleep mode		30	80	150	μs
$t_{wake(dom)WAKE_N}$	dominant wake-up time on pin WAKE_N	Sleep mode		7	30	50	μs
t _{gotonorm}	go to normal time	time period for mode change from Sleep, Power-on or Standby mode into Normal mode		2	5	10	μs
t _{init(norm)}	normal mode initialization time			5	-	20	μs
t _{gotosleep}	go to sleep time	time period for mode change from Normal slope mode into Sleep mode		2	5	10	μs
t _{to(dom)TXD}	TXD dominant time-out time	V _{TXD} = 0 V		27	55	90	ms

[1] All parameters are guaranteed over the virtual junction temperature range by design. Factory testing uses correlated test conditions to cover the specified temperature and power supply voltage range.

[2] Not applicable for the /10 versions of the TJA1021.

[3] $\delta I, \delta 3 = \frac{t_{bus(rec)(min)}}{2 \times t_{bit}}$. Variable $t_{bus(rec)(min)}$ is illustrated in the LIN timing diagram in Figure 6.

[4] Bus load conditions are: C_{BUS} = 1 nF and R_{BUS} = 1 k Ω ; C_{BUS} = 6.8 nF and R_{BUS} = 660 Ω ; C_{BUS} = 10 nF and R_{BUS} = 500 Ω .

[5] $\delta 2, \delta 4 = \frac{t_{bus(rec)(max)}}{2 \times t_{bit}}$. Variable $t_{bus(rec)(max)}$ is illustrated in the LIN timing diagram in Figure 6.

[6] Load condition pin RXD: C_{RXD} = 20 pF and R_{RXD} = 2.4 k Ω .

[7] For V_{BAT} > 18 V the LIN transmitter might be suppressed. If TXD is HIGH then the LIN transmitter output is recessive.

TJA1021 ISO 17987/LIN 2.x/SAE J2602 transceiver

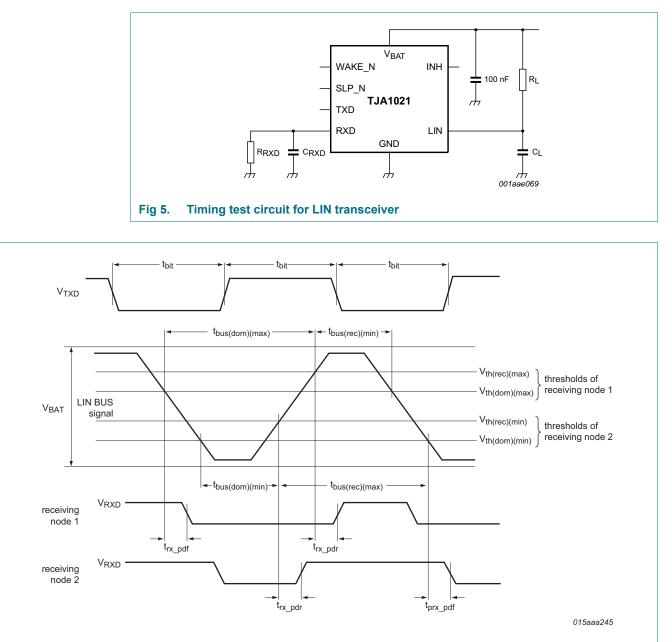
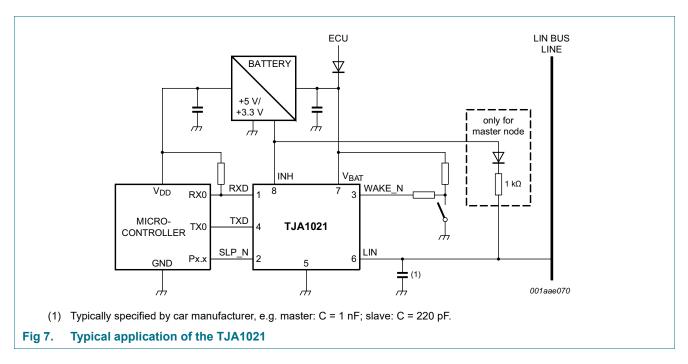
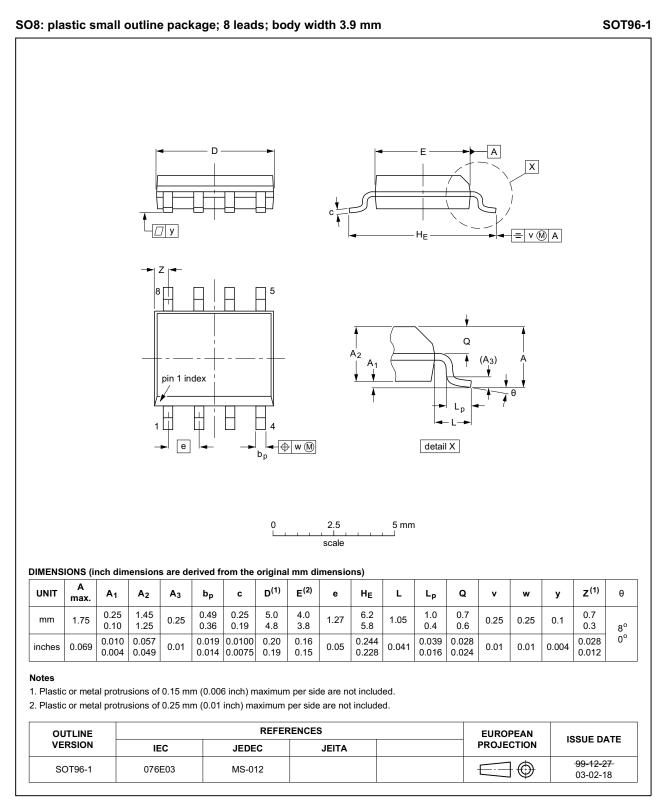



Fig 6. Timing diagram LIN transceiver

12. Application information

13. Test information

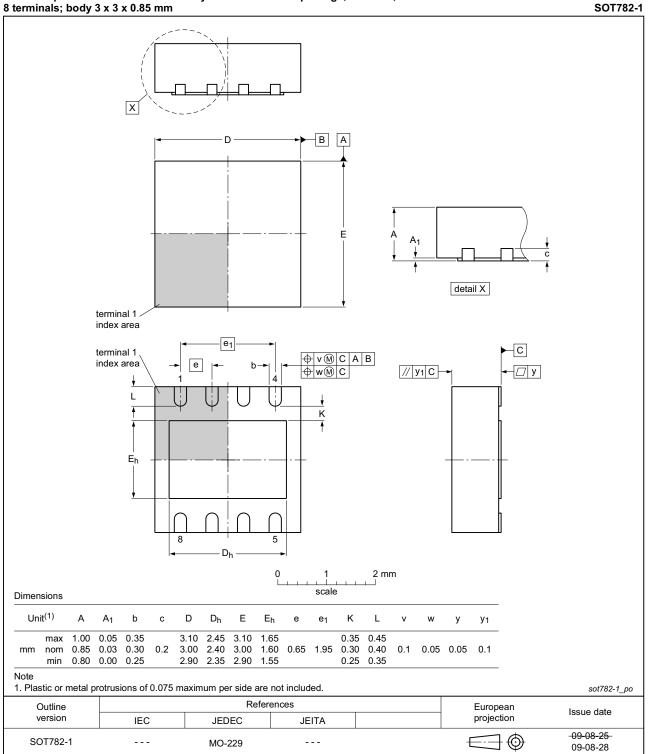
Immunity against automotive transients (malfunction and damage) in accordance with LIN EMC Test Specification / Version 1.0; August 1, 2004.


The waveforms of the applied transients are according to ISO 7637-2: Draft 2002-12, test pulses 1, 2a, 3a and 3b.

13.1 Quality information

This product has been qualified to the appropriate Automotive Electronics Council (AEC) standard Q100 or Q101 and is suitable for use in automotive applications.

16 of 25


14. Package outline

<u>TJA1</u>021

ISO 17987/LIN 2.x/SAE J2602 transceiver

TJA1021

HVSON8: plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 3 x 3 x 0.85 mm

Fig 9. Package outline SOT782-1 (HVSON8)

15. Handling information

All input and output pins are protected against ElectroStatic Discharge (ESD) under normal handling. When handling ensure that the appropriate precautions are taken as described in *JESD625-A* or equivalent standards.

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

All information provided in this document is subject to legal disclaimers.

TJA1021

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

16.4 Reflow soldering

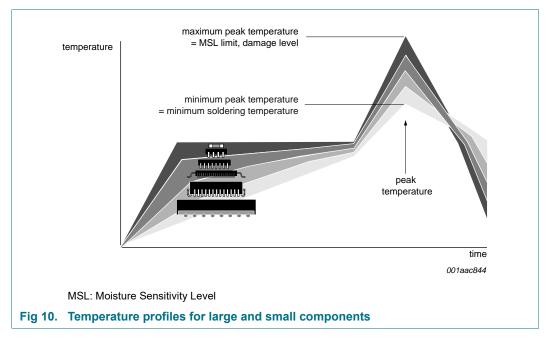
Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 10</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 9 and 10

Table 9. SnPb eutectic process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	≥ 350			
< 2.5	235	220			
≥ 2.5	220	220			

Table 10. Lead-free process (from J-STD-020D)


Package thickness (mm)	Package reflow temperature (°C)			
	Volume (mm ³)			
	< 350	350 to 2000	> 2000	
< 1.6	260	260	260	
1.6 to 2.5	260	250	245	
> 2.5	250	245	245	

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 10.

ISO 17987/LIN 2.x/SAE J2602 transceiver

TJA1021

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

17. Soldering of HVSON packages

<u>Section 16</u> contains a brief introduction to the techniques most commonly used to solder Surface Mounted Devices (SMD). A more detailed discussion on soldering HVSON leadless package ICs can found in the following application notes:

- AN10365 'Surface mount reflow soldering description"
- AN10366 "HVQFN application information"

18. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
TJA1021 v.8	20181218	Product data sheet	-	TJA1021 v.7		
Modifications:	 ISO 17987- 	4:2016 (12 V) compliant				
	<u>Section 2.1</u> : pin-to-pin compatible with MC33662					
	 Figure 2(b): 	revised/resized				
	<u>Section 7</u> : 2	2nd paragraph added				
	• <u>Table 8,</u> Tal	ole note 2: table note reference	ce added to parameter	r t _{tx_sym}		
	 Figure 7, Fi 	gure note 1 revised				
TJA1021 v.7	20110325	Product data sheet	-	TJA1021 v.6		
TJA1021 v.6	20101230	Product data sheet	-	TJA1021 v.5		
TJA1021 v.5	20091022	Product data sheet	-	TJA1021 v.4		
TJA1021 v.4	20090119	Product data sheet	-	TJA1021 v.3		
TJA1021 v.3	20071008	Product data sheet	-	TJA1021 v.2		
TJA1021 v.2	20070903	Preliminary data sheet	-	TJA1021 v.1		
TJA1021 v.1	20061016	Objective data sheet	-	-		

19. Legal information

19.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product sole and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Product data sheet

ISO 17987/LIN 2.x/SAE J2602 transceiver

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

ISO 17987/LIN 2.x/SAE J2602 transceiver

21. Contents

1	General description	. 1
2	Features and benefits	. 1
2.1	General	. 1
2.2	Low power management	
2.3	Protection mechanisms	. 2
3	Quick reference data	. 2
4	Ordering information	. 2
5	Block diagram	. 3
6	Pinning information	
6.1	Pinning	. 4
6.2	Pin description	
7	Functional description	. 5
7.1	Operating modes	. 5
7.2	Sleep mode	. 6
7.3	Standby mode	
7.4	Normal mode	
7.5	Wake-up	
7.6 7.7	Remote and local wake-up	
7.8	Wake-up source recognition	
7.9	TXD dominant time-out function	
7.10	Fail-safe features	
8	Limiting values	
0		
	•	
9 10	Thermal characteristics	10 11
9	Thermal characteristics Static characteristics	10
9 10	Thermal characteristicsStatic characteristicsDynamic characteristics	10 11
9 10 11	Thermal characteristicsStatic characteristicsDynamic characteristicsApplication information	10 11 13
9 10 11 12	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information	10 11 13 16
9 10 11 12 13	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information	10 11 13 16 16
9 10 11 12 13 13.1	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline	10 11 13 16 16 16
9 10 11 12 13 13.1 14	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information	 10 11 13 16 16 16 17
9 10 11 12 13 13.1 14 15	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages	10 11 13 16 16 16 17 19
9 10 11 12 13 13.1 14 15 16	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information	 10 11 13 16 16 16 17 19 19
9 10 11 12 13 13.1 14 15 16 16.1	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering	 10 11 13 16 16 16 17 19 19
9 10 11 12 13 13.1 14 15 16 16.1 16.2	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering	 10 11 13 16 16 16 17 19 19 19 19
9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering	 10 11 13 16 16 16 17 19 19 19 19 19 19
9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Reflow soldering Revision history	 10 11 13 16 16 16 17 19 19 19 19 20
 9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4 17 	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Soldering of HVSON packages	 10 11 13 16 16 16 17 19 19 19 19 20 21
9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4 17 18 19 19.1	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Reflow soldering Revision history	 10 11 13 16 16 16 17 19 19 19 19 20 21 22
 9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4 17 18 19 19.1 19.2 	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Reflow soldering Revision history Legal information Data sheet status Definitions	 10 11 13 16 16 16 17 19 19 19 19 20 21 22 23 23 23
 9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4 17 18 19 19.1 19.2 19.3 	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Reflow soldering Soldering of HVSON packages Revision history Legal information Data sheet status Definitions Disclaimers	 10 11 13 16 16 16 17 19 19 19 19 19 20 21 23 23 23 23
 9 10 11 12 13 13.1 14 15 16 16.1 16.2 16.3 16.4 17 18 19 19.1 19.2 	Thermal characteristics Static characteristics Dynamic characteristics Application information Test information Quality information Package outline Handling information Soldering of SMD packages Introduction to soldering Wave and reflow soldering Wave soldering Reflow soldering Revision history Legal information Data sheet status Definitions	 10 11 13 16 16 16 17 19 19 19 19 20 21 22 23 23 23

21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2018.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 December 2018 Document identifier: TJA1021

All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

<u>TJA1021T/10/C,112</u> <u>TJA1021T/10/C,118</u> <u>TJA1021T/20/C,112</u> <u>TJA1021T/20/C,118</u> <u>TJA1021TK/20/C,118</u> <u>TJA1021TK/20/C,118</u> <u>TJA1021TK/10/C,118</u>