

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

September 2010

FDD13AN06A0_F085

N-Channel PowerTrench[®] MOSFET 60V, 50A, 13.5m Ω

Features

- $r_{DS(ON)} = 11.5 m\Omega$ (Typ.), $V_{GS} = 10 V$, $I_D = 50 A$
- $Q_g(tot) = 22nC (Typ.), V_{GS} = 10V$
- · Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- · Qualified to AEC Q101
- · RoHS Compliant

Formerly developmental type 82555

Applications

- · Motor / Body Load Control
- · ABS Systems
- Powertrain Management
- · Injection Systems
- · DC-DC converters and Off-line UPS
- · Distributed Power Architectures and VRMs
- · Primary Switch for 12V and 24V systems

TO-252AA FDD SERIES

SOURCE

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
	Continuous (T _C < 80°C, V _{GS} = 10V)	50	Α
ID	Continuous ($T_A = 25^{\circ}$ C, $V_{GS} = 10$ V, $R_{\theta JA} = 52^{\circ}$ C/W)	9.9	А
	Pulsed	Figure 4	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	56	mJ
	Power dissipation	115	W
P_{D}	Derate above 25°C	0.77	W/°c
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case TO-252	1.3	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252	100	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.

All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package	Marking	and	Orderina	Information
			0	

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD13AN06A0	FDD13AN06A0_F085	TO-252AA	330mm	16mm	2500 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

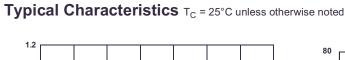
Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	acteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_0$	_{GS} = 0V	60	-	-	V
1	Zero Gate Voltage Drain Current	V _{DS} = 50V		-	-	1	^
IDSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

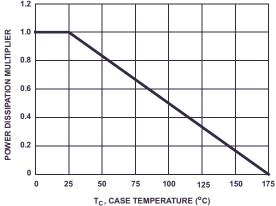
On Characteristics

$V_{GS(TH)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	2	-	4	V
		I _D = 50A, V _{GS} = 10V	-	0.0115	0.0135	
raccoun	Drain to Source On Resistance	I _D = 25A, V _{GS} = 6V	-	0.022	0.034	0
^I DS(ON)	Stant to Source on Nooletanee	$I_D = 50A, V_{GS} = 10V,$ $T_J = 175$ °C	-	0.026	0.030	- 32

Dynamic Characteristics

C _{ISS}	Input Capacitance	\/ - OF\/ \/ -	- 0)/	-	1350	-	pF
C _{OSS}	Output Capacitance	V _{DS} = 25V, V _{GS} = f = 1MHz	= UV,	-	260	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 - 1101112		-	90	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$			22	29	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 2V$	V _{DD} = 30V	-	2.6	3.4	nC
	Gate to Source Gate Charge		I _D = 50A	-	8.2	-	nC
Q _{gs} Q _{gs2}	Gate Charge Threshold to Plateau		$I_g = 1.0 \text{mA}$	-	5.6	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	6.4	-	nC


Switching Characteristics $(V_{GS} = 10V)$


t _{ON}	Turn-On Time		-	-	130	ns
t _{d(ON)}	Turn-On Delay Time		-	9	-	ns
t _r	Rise Time	V _{DD} = 30V, I _D = 50A	-	77	-	ns
t _{d(OFF)}	Turn-Off Delay Time	V_{GS} = 10V, R_{GS} = 12 Ω	-	26	-	ns
t _f	Fall Time		-	25	-	ns
t _{OFF}	Turn-Off Time		-	-	77	ns

Drain-Source Diode Characteristics

V \$00	Source to Drain Diode Voltage	I _{SD} = 50A	-	-	1.25	V
V_{SD}	Source to Drain Diode voltage	I _{SD} = 25A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 50A$, $dI_{SD}/dt = 100A/\mu s$	-	-	24	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 50A$, $dI_{SD}/dt = 100A/\mu s$	-	-	15	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, $L = 45\mu H$, $I_{AS} = 50A$.

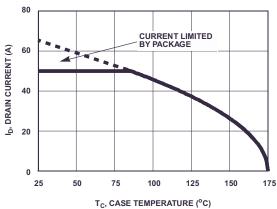


Figure 1. Normalized Power Dissipation vs
Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

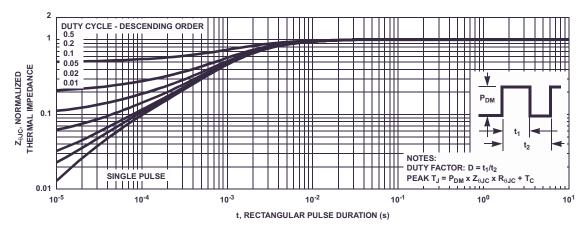


Figure 3. Normalized Maximum Transient Thermal Impedance

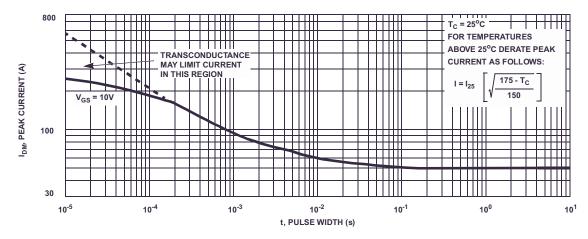


Figure 4. Peak Current Capability

©2010 Fairchild Semiconductor Corporation FDD13AN06A0_F085 Rev. A

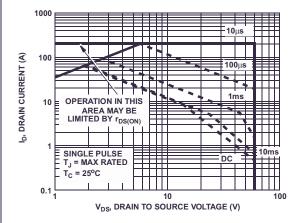
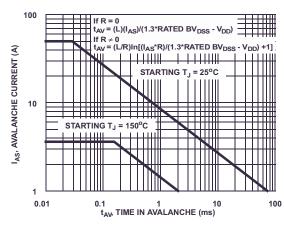



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

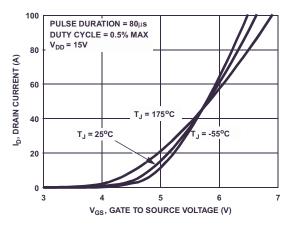


Figure 7. Transfer Characteristics

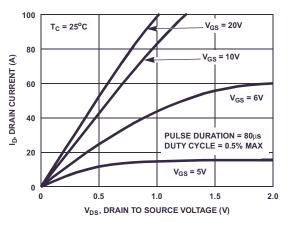


Figure 8. Saturation Characteristics

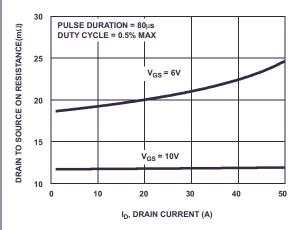


Figure 9. Drain to Source On Resistance vs Drain Current

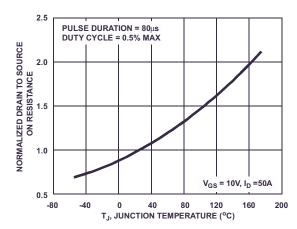


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

©2010 Fairchild Semiconductor Corporation

Typical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

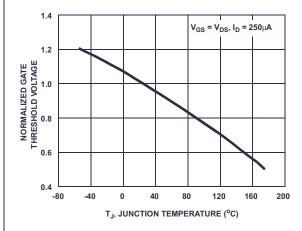


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

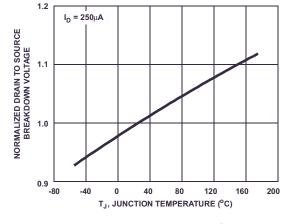


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

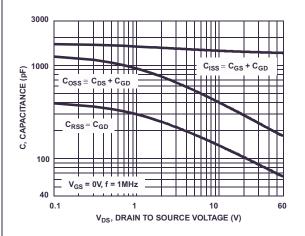


Figure 13. Capacitance vs Drain to Source Voltage

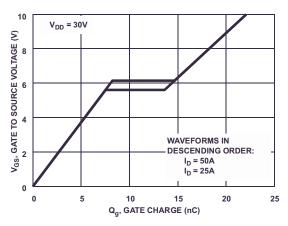


Figure 14. Gate Charge Waveforms for Constant Gate Current

Test Circuits and Waveforms

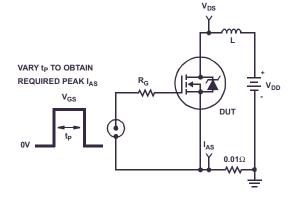


Figure 15. Unclamped Energy Test Circuit

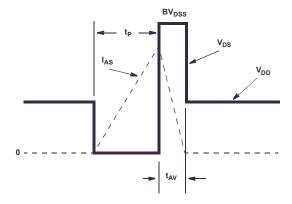


Figure 16. Unclamped Energy Waveforms

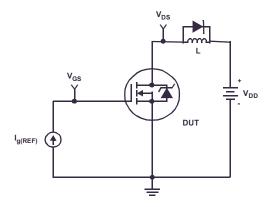


Figure 17. Gate Charge Test Circuit

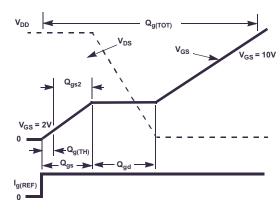


Figure 18. Gate Charge Waveforms

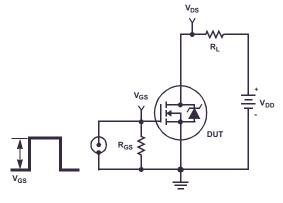


Figure 19. Switching Time Test Circuit

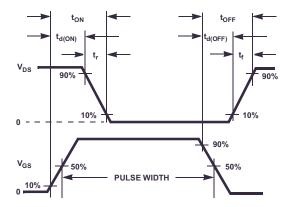


Figure 20. Switching Time Waveforms

©2010 Fairchild Semiconductor Corporation

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
 (EQ. 1)

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

Area in Inches Squared

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

Area in Centimeters Squared

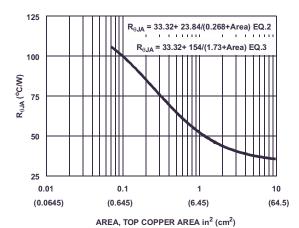
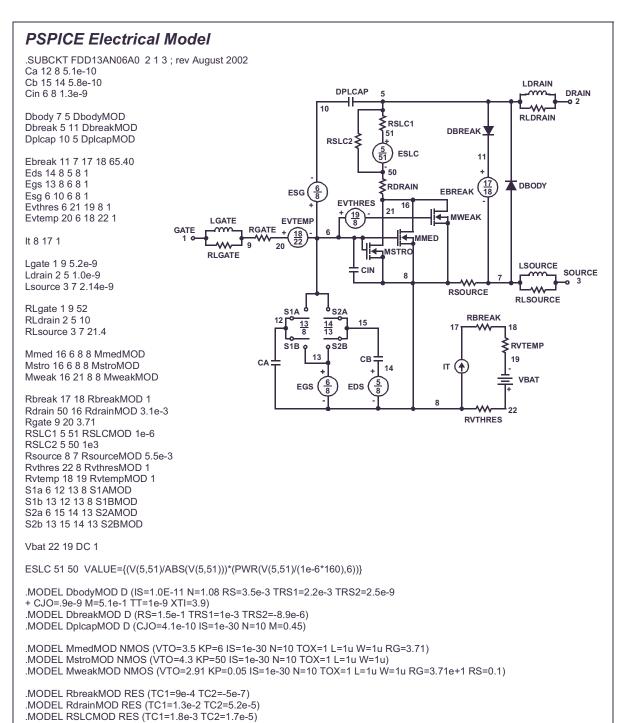



Figure 21. Thermal Resistance vs Mounting
Pad Area

.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=.5 VOFF=-1.5)

Note: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

©2010 Fairchild Semiconductor Corporation

.MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.0e-5)
.MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6)

.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-2)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-5)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-5)

```
SABER Electrical Model
rev August 2002
template FDD13AN06A0 n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model dbodymod = (isl=1.0e-11,nl=1.08,rs=3.5e-3,trs1=2.2e-3,trs2=2.5e-9,cjo=.9e-9,m=5.1e-1,tt=1e-9,xti=3.9)
dp..model dbreakmod = (rs=1.5e-1.trs1=1e-3.trs2=-8.9e-6)
dp..model dplcapmod = (cjo=4.1e-10,isl=10e-30,nl=10,m=0.45)
m..model mmedmod = (type=_n,vto=3.5,kp=6,is=1e-30,tox=1)
m..model mstrongmod = (type=_n,vto=4.3,kp=50,is=1e-30, tox=1)
m..model mweakmod = (type=_n, vto=2.91, kp=0.05, is=1e-30, tox=1, rs=0.1)
                                                                                                             LDRAIN
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5,voff=-2)
                                                                     DPLCAP
                                                                                                                      DRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-5)
                                                                  10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.5,voff=.5)
                                                                                                            RI DRAIN
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=.5,voff=-1.5)
                                                                               ≷RSLC1
c.ca n12 n8 = 5.1e-10
                                                                                51
                                                                   RSLC2 ₹
c.cb n15 n14 = 5.8e-10
                                                                                  ISCI
c.cin n6 n8 = 1.3e-9
                                                                                            DBREAK
                                                                                50
dp.dbody n7 n5 = model=dbodymod
                                                                               ≨RDRAIN
dp.dbreak n5 n11 = model=dbreakmod
                                                                6
8
                                                           ESG
                                                                                                             DBODY
dp.dplcap n10 n5 = model=dplcapmod
                                                                      EVTHRES
                                                                        (<u>19</u>)
spe.ebreak n11 n7 n17 n18 = 65.40 <sub>GATE</sub>
                                          LGATE
                                                         EVTEMP
                                                  RGATE
spe.eds n14 n8 n5 n8 = 1
                                                                                              EBREAK
spe.eas n13 n8 n6 n8 = 1
                                                 I 9
                                                        20
                                                                           H MSTR
                                         RLGATE
spe.esq n6 n10 n6 n8 = 1
                                                                                                            LSQURCE
spe.evthres n6 n21 n19 n8 = 1
                                                                           CIN
                                                                                                                      SOURCE
spe.evtemp n20 n6 n18 n22 = 1
                                                                                           RSOURCE
                                                                                                            RLSOURCE
i.it n8 n17 = 1
                                                                                                 RBREAK
                                                                   14
13
I.lgate n1 n9 = 5.2e-9
                                                                                              17
I.ldrain n2 n5 = 1.0e-9
                                                                                                           RVTEMP
I.lsource n3 n7 = 2.14e-9
                                                                   o S2B
                                                                                                           19
                                                    CA
                                                                                            IT
res.rlgate n1 n9 = 52
                                                                                                            VBAT
                                                                             <u>5</u>
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 21.4
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
                                                                                                 RVTHRES
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=9e-4,tc2=-5e-7
res.rdrain n50 n16 = 3.1e-3, tc1=1.3e-2,tc2=5.2e-5
res.rgate n9 n20 = 3.71
res.rslc1 n5 n51 = 1e-6, tc1=1.8e-3,tc2=1.7e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 5.5e-3, tc1=1e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.0e-5
res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6
sw vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
|sc| = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/160))**6))
```

©2010 Fairchild Semiconductor Corporation FDD13AN06A0_F085 Rev. A

CASE

ŧΙ

PSPICE Thermal Model JUNCTION REV 22 August 2002 FDD13AN06A0T CTHERM1 TH 6 9.7e-4 CTHERM2 6 5 6.2e-3 CTHERM3 5 4 4.6e-3 RTHERM1 CTHERM1 CTHERM4 4 3 4.9e-3 CTHERM5 3 2 8e-3 CTHERM6 2 TL 4.2e-2 RTHERM1 TH 6 5.24e-2 RTHERM2 6 5 10.08e-2 RTHERM3 5 4 4.28e-1 RTHERM2 CTHERM2 RTHERM4 4 3 1.8e-1 RTHERM5 3 2 1.9e-1 RTHERM6 2 TL 2.1e-1 5 SABER Thermal Model SABER thermal model FDD13AN06A0T RTHERM3 CTHERM3 template thermal_model th tl thermal cth, tl ctherm.ctherm1 th 6 =9.7e-4 ctherm.ctherm2 6 5 =6.2e-3 ctherm.ctherm3 5 4 =4.6e-3 ctherm.ctherm4 4 3 =4.9e-3 ctherm.ctherm5 3 2 =8e-3 RTHERM4 CTHERM4 ctherm.ctherm6 2 tl =4.2e-2 rtherm.rtherm1 th 6 =5.24e-2 rtherm.rtherm2 6 5 = 10.08e-2 3 rtherm.rtherm3 5 4 =4.28e-1 rtherm.rtherm4 4 3 =1.8e-1 rtherm.rtherm5 3 2 =1.9e-1 CTHERM5 RTHERM5 rtherm.rtherm6 2 tl =2.1e-1 2 RTHERM6 CTHERM6

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

F-PFS™ FRFET® Auto-SPM™ Build it Now™

Global Power Resource SM CorePLUS™ Green FPS™

 $\mathsf{CorePOWER}^{\scriptscriptstyle\mathsf{TM}}$ Green FPS™ e-Series™ CROSSVOLT™ Gmax™

 $\mathsf{CTL}^{\mathsf{TM}}$ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™

MicroPak2™ MillerDrive™ Fairchild[®] MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OptoHiT™ FACT® OPTOLOGIC® OPTOPLANAR®

FastvCore™ FETBench™ FlashWriter®*

PDP SPM™ **FPSTM**

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

OFFT QS^{TM} Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3

SuperSOT™-6 SuperSOT™-8 . SupreMOS™ SyncFET™

Sync-Lock™

The Power Franchise® bwer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™ UHC

Ultra FRFET™ UniFFT™ VCX™ VisualMax™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 148

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

FDD13AN06A0_F085 FDD13AN06A0-F085