

NTR5103N

MOSFET – Single, N-Channel, Small Signal, SOT-23 60 V, 310 mA

Features

- Low $R_{DS(on)}$
- Small Footprint Surface Mount Package
- Trench Technology
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

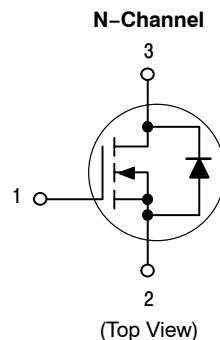
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	V
Gate-to-Source Voltage	V_{GS}	± 30	V
Drain Current (Note 1) Steady State	I_D	260 190	mA
$t < 5\text{ s}$		310 220	
Power Dissipation (Note 1) Steady State $t < 5\text{ s}$	P_D	300 420	mW
Pulsed Drain Current ($t_p = 10\text{ }\mu\text{s}$)	I_{DM}	1.2	A
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 to +150	$^\circ\text{C}$
Source Current (Body Diode)	I_S	300	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T_L	260	$^\circ\text{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

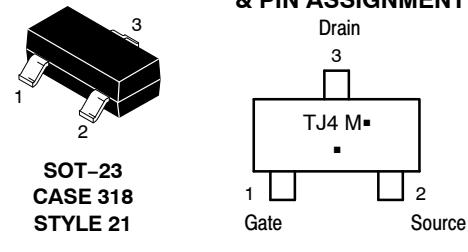
Characteristic	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 1)	$R_{\theta JA}$	417	$^\circ\text{C/W}$
Junction-to-Ambient – $t \leq 5\text{ s}$ (Note 1)	$R_{\theta JA}$	300	

1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)



ON Semiconductor®

<http://onsemi.com>


$V_{(\text{BR})DSS}$	$R_{DS(\text{on})}$ MAX	I_D MAX (Note 1)
60 V	3.0 Ω @ 4.5 V	310 mA
	2.5 Ω @ 10 V	

Simplified Schematic

(Top View)

MARKING DIAGRAM & PIN ASSIGNMENT

TJ4 = Device Code
M = Date Code
▪ = Pb-Free Package

(Note: Microdot may be in either location)

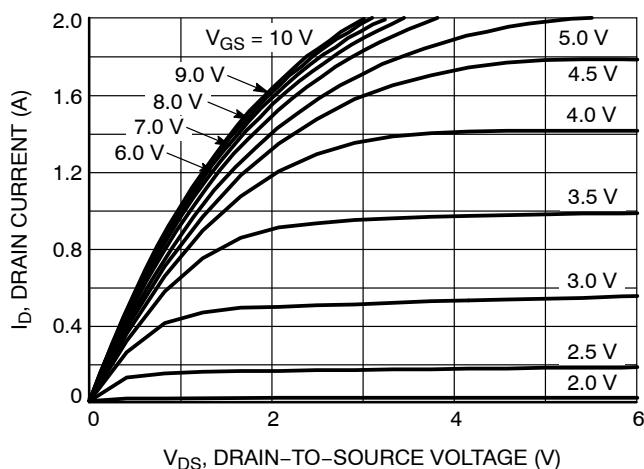
ORDERING INFORMATION

Device	Package	Shipping [†]
NTR5103NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

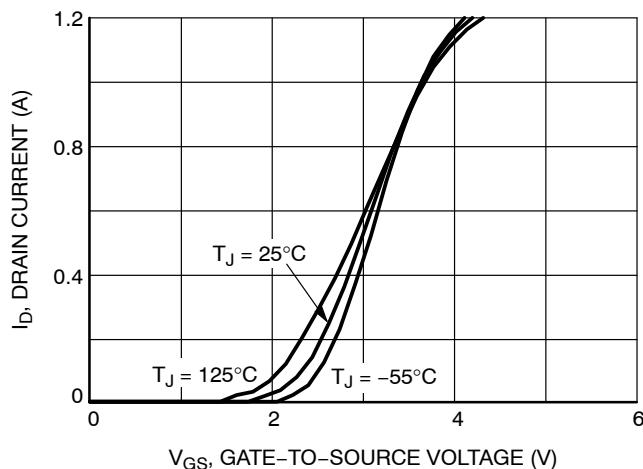
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTR5103N

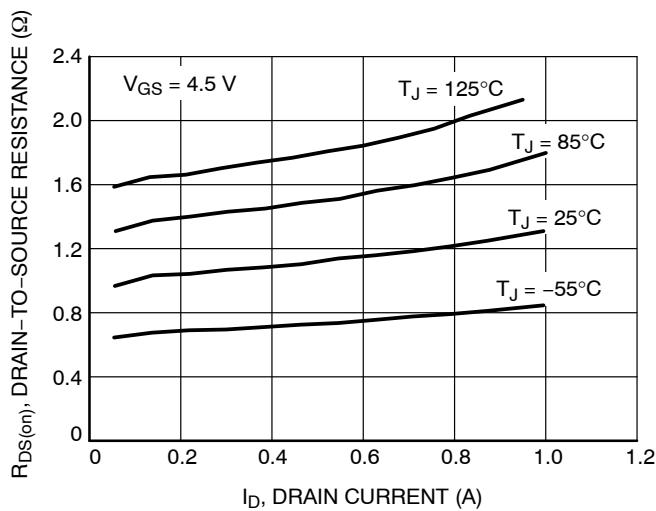
ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

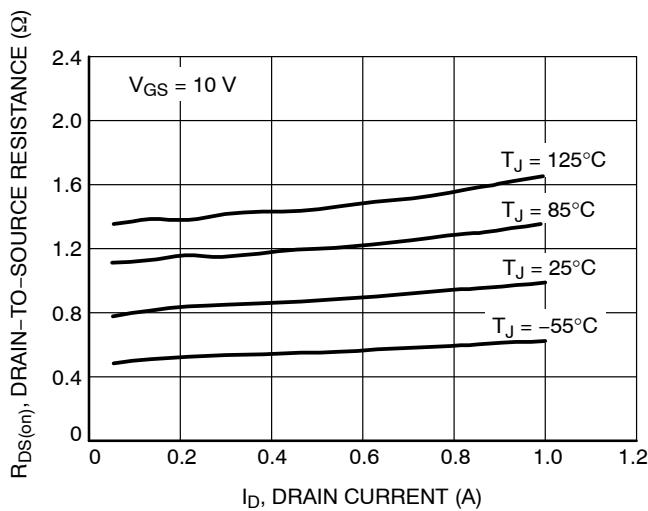

Parameter	Symbol	Test Condition		Min	Typ	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}/T_J}$				75		$\text{mV}/^\circ\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{GS}} = 0 \text{ V}$, $V_{\text{DS}} = 60 \text{ V}$	$T_J = 25^\circ\text{C}$		1		μA
			$T_J = 125^\circ\text{C}$			500	
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}$, $V_{\text{GS}} = \pm 30 \text{ V}$			200		nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}$, $I_D = 250 \mu\text{A}$		1.9		2.6	V
Negative Threshold Temperature Coefficient	$V_{\text{GS}(\text{TH})/T_J}$				4.4		$\text{mV}/^\circ\text{C}$
Drain-to-Source On Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 240 \text{ mA}$			1.0	2.5	Ω
		$V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 50 \text{ mA}$			1.4	3.0	
Forward Transconductance	g_{FS}	$V_{\text{DS}} = 5 \text{ V}$, $I_D = 200 \text{ mA}$			530		mS
CHARGES AND CAPACITANCES							
Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0 \text{ V}$, $f = 1 \text{ MHz}$, $V_{\text{DS}} = 25 \text{ V}$		26.7	40	pF	
Output Capacitance	C_{OSS}			4.6			
Reverse Transfer Capacitance	C_{RSS}			2.9			
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = 5 \text{ V}$, $V_{\text{DS}} = 10 \text{ V}$, $I_D = 240 \text{ mA}$		0.81		nC	
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			0.31			
Gate-to-Source Charge	Q_{GS}			0.48			
Gate-to-Drain Charge	Q_{GD}			0.08			
SWITCHING CHARACTERISTICS, $V_{\text{GS}} = V$ (Note 3)							
Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	$V_{\text{GS}} = 10 \text{ V}$, $V_{\text{DD}} = 30 \text{ V}$, $I_D = 200 \text{ mA}$, $R_{\text{G}} = 10 \Omega$		1.7		ns	
Rise Time	t_r			1.2			
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			4.8			
Fall Time	t_f			3.6			
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	$V_{\text{GS}} = 0 \text{ V}$, $I_S = 200 \text{ mA}$	$T_J = 25^\circ\text{C}$		0.79	1.2	V
			$T_J = 85^\circ\text{C}$		0.7		

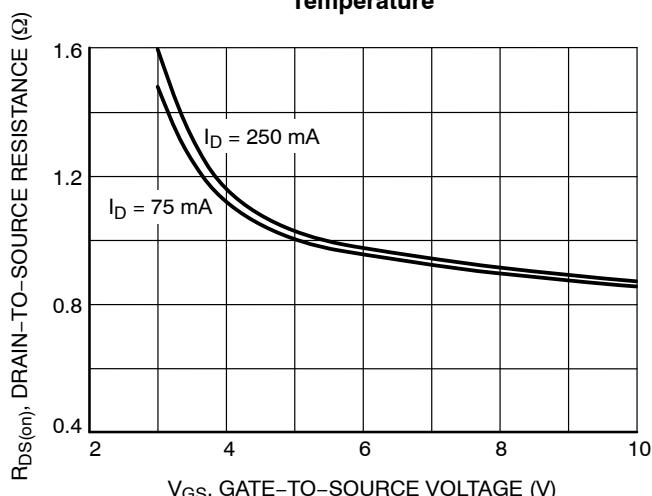
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Pulse Test: pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$

3. Switching characteristics are independent of operating junction temperatures


TYPICAL CHARACTERISTICS


Figure 1. On-Region Characteristics


Figure 2. Transfer Characteristics

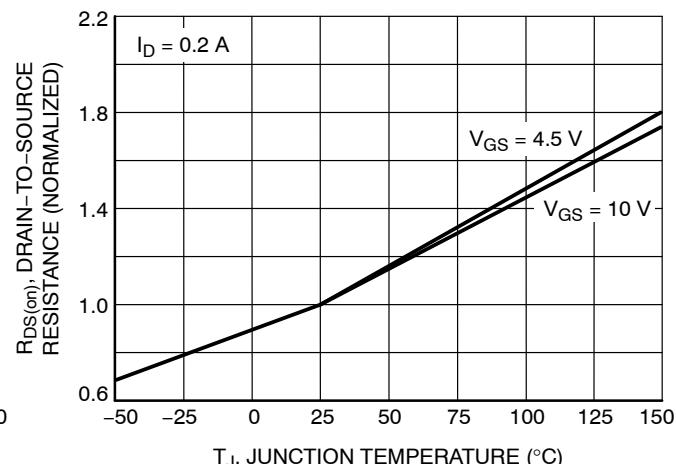

Figure 3. On-Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Temperature

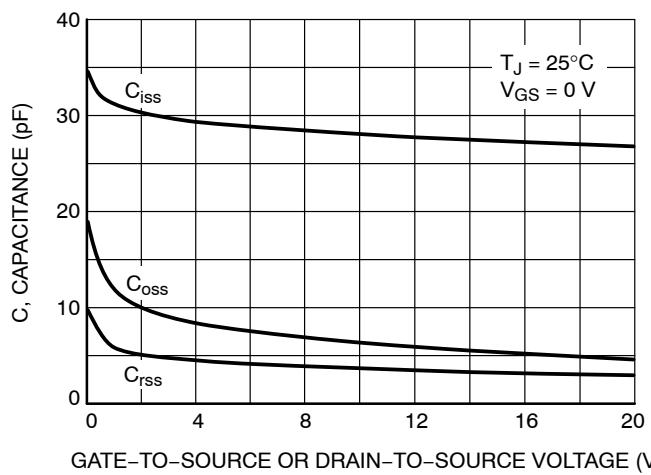


Figure 5. On-Resistance vs. Gate-to-Source Voltage

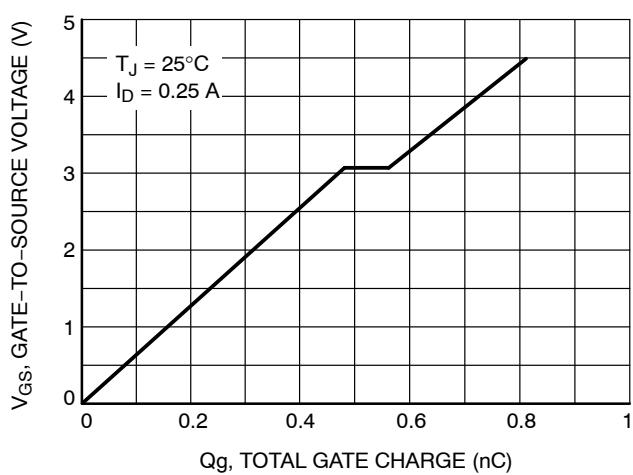


Figure 6. On-Resistance Variation with Temperature

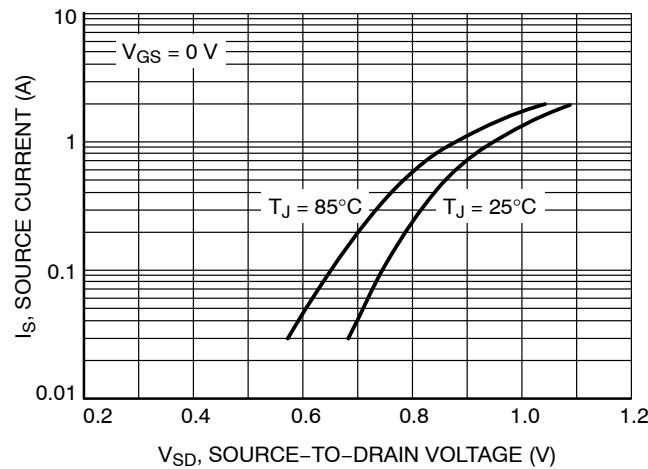

TYPICAL CHARACTERISTICS

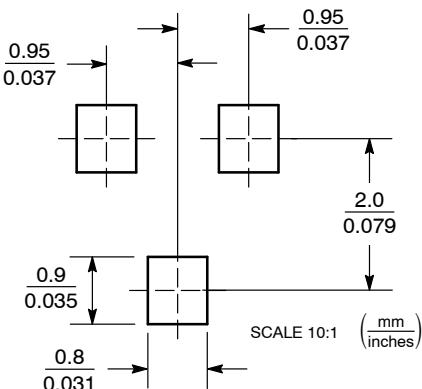
Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-23 (TO-236)
CASE 318-08
ISSUE AP


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
c	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
H_E	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°	---	10°	0°	---	10°

STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN

SOLDERING FOOTPRINT

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[NTR5103NT1G](#)