

1101

2R20

6/

1000

1210/1218/2010/2512 RoHS compliant & Halogen free

Product specification – July 10, 2017 V.7

Chip Resistor Surface Mount AC SERIES 0201 to 2512

SCOPE

This specification describes AC0201 to AC2512 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(2) (3) (4) (5) (7) (I)(6)

(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

$D = \pm 0.5\%$	$J = \pm 5\%$ (for Jumper ordering, use code of J)
$F = \pm 1\%$	

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel	10 = 10 inch dia. Reel
13 = 13 inch dia. Reel	7W = 7 inch dia. Reel & 2 × standard power
	3W = 13 inch dia. Reel & 2 × standard power

(6) RESISTANCE VALUE

I Ω to 22 M Ω

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g.1K2, not 1K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of global part

Resistance rule number Resistance coding rule	Example
XRXX (I to 9.76Ω)	R = Ω R5 = .5Ω 9R76 = 9.76Ω
XXRX	IOR = IOΩ
(10 to 97.6Ω)	97R6 = 97.6Ω
XXXR	$100R = 100\Omega$
(100 to 976Ω)	976R = 976 Ω
XKXX	K = 1,000Ω
(Ι to 9.76 KΩ)	9K76 = 9760Ω
XMXX	$IM = I,000,000\Omega$
(I to 9.76 M Ω)	9M76= 9,760,000 Ω
XXMX (10 MΩ)	$10M = 10,000,000\Omega$

ORDERING EXAMPLE

The ordering code for an AC0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel is: AC0402FR-07100KL.

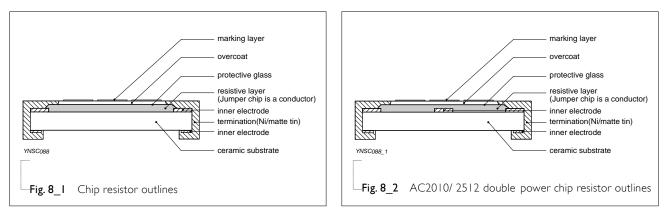
NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with ±0.5% tolerance is also available. For further information, please contact sales.

YAGEO Phicomp	Product specification 3
Chip Resistor	Surface Mount AC SERIES 0201 to 2512
<u>MARKING</u> AC0201 / AC0402	
Fig. I	No marking
AC0603 / AC0805 / AC1206 / J	AC1210 / AC2010 / AC2512
Fig. 2 Value=10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
AC0603	
$Fig. 3 \qquad Value = 24 \ \Omega$	E-24 series: 3 digits, ±1% & ±0.5% One short bar under marking letter
Fig. 4 Value = 12.4 K Ω	E-96 series: 3 digits, $\pm 1\%$ & $\pm 0.5\%$ First two digits for E-96 marking rule and 3rd letter for number of zeros
AC0805 / AC1206 / AC1210 / /	AC2010 / AC2512
Γig. 5 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros
AC1218	
Fig. 6 Value = 10 KΩ	E-24 series: 3 digits, ±5% First two digits for significant figure and 3rd digit for number of zeros
Γig. 7 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros

ΝΟΤΕ

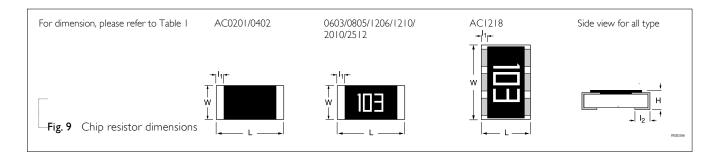
For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.



Chip Resistor Surface Mount AC SERIES 0201 to 2512

CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.


OUTLINES

DIMENSIONS

Table I For outlines, please refer to Fig. 9

ТҮРЕ	L (mm)	W (mm)	H (mm)	I⊨(mm)	l ₂ (mm)
AC0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
AC0402	1.00 ±0.05	0.50 ±0.05	0.32 ±0.05	0.20 ±0.10	0.25 ±0.10
AC0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AC0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AC1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC1210	3.10 ±0.10	2.60 ±0.15	0.55 ±0.10	0.45 ±0.15	0.50 ±0.20
AC1218	3.10 ±0.10	4.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.55 ±0.15	0.50 ±0.20
AC2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

Chip Resistor Surface MountACSERIES0201 to 2512

ELECTRICAL CHARACTERISTICS

		TERISTICS	CHARAC				CHARACTERISTICS																								
Jumper Criteria	Temperature Coefficient	Resistance Range	Dielectric Withstanding Voltage	Max. Overload Voltage	Max. Working Voltage	Operating Temperature Range	POWER	ТҮРЕ																							
Rated Current	$ \Omega \le R \le 0\Omega $	5% (E24)																													
0.5A	-100/+350ppm°C	$ \Omega \leq R \leq 0M\Omega $																													
Maximum	$10\Omega < R \le 10M$	1% (E24/E96)				− 55 °C to																									
Current	±200ppm°C	$ \Omega \le R \le 0M\Omega $	50V	50V	25V	I55 ℃ to	1/20 W	AC0201																							
1.0A		0.5% (E24/E96)				155 C																									
		$10\Omega \le R \le 1M\Omega$																													
		Jumper $<$ 50m Ω																													
Rated Current	$ \Omega \le R \le 0\Omega $	5% (E24)																													
A	±200ppm°C	$I\Omega \le R \le 22M\Omega$																													
Maximum	$10\Omega < R \le 10M\Omega$	0.5%, 1% (E24/E96)	100V	100V	50V	/16 W −55 °C to 155 °C	1/16 W																								
Current	±100ppm°C	$ \Omega \leq R \leq 0M\Omega $																													
2A	$10M\Omega < R \le 22M\Omega$	Jumper<50m Ω						A CO 402																							
	±200ppm°C						AC0402																								
	$ \Omega \le R \le 0\Omega $	5% (E24)		100V																											
	±200 ppm°C	$ \Omega \le R \le 0M\Omega $	100V		100V						1001/			1001/						1001/				1001/	1001/	1001/		50V	- 55 °C to	I/8W	
	$10\Omega < R \le 10M\Omega$	0.5%, 1% (E24/E96)	1000			201	500	500	500	500	200	500	500	200	500	500	201	500	155 °C	1/0 • •											
	±100 ppm°C	$ \Omega \le R \le 10M\Omega$																													
Rated Current	$ \Omega \leq R \leq 0\Omega $	5% (E24)																													
IA	±200ppm°C	$ \Omega \le R \le 22M\Omega$																													
Maximum	$10\Omega < R \le 10M\Omega$	0.5%, 1% (E24/E96)			75.7	–55 °C to																									
Current	±100ppm°C	$ \Omega \le R \le 0M\Omega $	150V	150V	75V	155 ℃	1/10 W																								
2A	$10M\Omega < R \le 22M\Omega$	Jumper<50m Ω																													
	±200ppm°C							AC0603																							
	$ \Omega \leq R \leq 0\Omega $	5% (E24)																													
	±200 ppm°C	$I\Omega \leq R \leq I0M\Omega$			75.7	- 55 °C to																									
	$10\Omega < R \le 10M\Omega$	0.5%, 1% (E24/E96)	150V	150V	75V	155 °C	1/5 W																								
	±100 ppm°C	$I\Omega \leq R \leq I0M\Omega$																													

Chip Resistor Surface MountACSERIES0201 to 2512

$ \textbf{AC0805} = \begin{bmatrix} 1/8 \ \end{tabular} & -55 \ \end{tabular}^{-55 \ \end{tabular} < 0} & 150 \ \end{tabular} & 300 \ \end{tabular} & 3$			CHARACTERISTICS						
$ AC0805 = \begin{bmatrix} 1/8 \lor & \frac{-55 \ ^{\circ}C \ 10}{155 \ ^{\circ}C} & 150 \lor 300 \lor 300 \lor 300 \lor \\ 10 \le R \le 22 \lor M2 & \pm 200 \text{pm}^{\circ}C & 2A \\ 0.5\% \ 1\% \ (E24F96) & 100 \le R \le 10M2 & \text{Maximum} \\ 10 \ S\% \ (E24F96) & 100 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 200 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 10M2 & \pm 100 \text{pm}^{\circ}C & 2M \\ 10 \le R \le 1$	TYPE	POWER	Temperature	Working	Overload	Withstanding			
$ AC0805 = \begin{bmatrix} 1/8 \ W & \frac{-55 \ ^{\circ}C \ 10}{155 \ ^{\circ}C} & 150 \ & 300 \ & 300 \ & 300 \ & 300 \ & 0.5\% \ 1\% \ (224F96) & 100 \ C \ R \le 10MQ & Maximum \ Jumper < 50mQ & 10MQ < R \le 22MQ & 5A \ & \pm 200pm^{\circ}C & 1200 \ pm^{\circ}C & 1$							5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
$AC0805 = \begin{bmatrix} 1/8 & W & -35 & C & D & 150V & 300V & 300V & 300V & 10 & SR (E10MQ) & \pm 100 ppm^{0}C & Current \\ Jumper < 50mQ & 10MQ < R \le 22MQ & 5A \\ \pm 200ppm^{0}C & SR & \pm 200ppm^{0}C & SR & \pm 200ppm^{0}C & 0.5K & K & (E24H296) & 10Q < R \le 10MQ & 10Q < R < 10MQ & 10Q & 10MQ & 10Q & 10MQ & 10MQ & 10Q & 10MQ & 10MQ & 10MQ & 10M$							$ \Omega \leq R \leq 22 M\Omega$	±200ppm°C	2A
$AC0805 = \begin{bmatrix} 102 \text{ S R } 104\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \text{Current} \\ \text{Jumper} < 50m\Omega & 104\Omega < \text{R } 2224\Omega & 5A \\ \pm 200 \text{ ppm}^{\circ}\text{C} & \\ \pm 200 \text{ ppm}^{\circ}\text{C} & \\ \pm 200 \text{ ppm}^{\circ}\text{C} & \\ 114 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 150\text{ V} & 300\text{ V} & 300\text{ V} & 102 \text{ S R } 10M\Omega & \pm 200 \text{ ppm}^{\circ}\text{C} \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 114 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200\text{ V} & 400\text{ V} & 500\text{ V} & \frac{0.58, 1\% (E244796)}{102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & 100 \text{ ppm}^{\circ}\text{C} & \\ 102 \text{ S R } 10M\Omega & 100 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1020 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text{C} & \\ 100 \text{ S R } 10M\Omega & \\ 1000 \text{ ppm}^{\circ}\text$			- 55 °C to		2001	2001/	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1/8 VV	155 °C	1500	3000	3007	$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
$AC1206 = \begin{bmatrix} 1.4 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 150 300 300 300 \\ 155 ^{\circ}\text{C} & 150 300 300 \\ 155 ^{\circ}\text{C} & 150 300 \\ 155 ^{\circ}\text{C} & 150 \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 114 \text{ W} & \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200 400 500 500 500 \\ 12 \leq R \leq 10M\Omega & \pm 100 \text{ ppm}^{\circ}\text{C} \\ 12 \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200 400 \\ 12 \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200 400 \\ 12 \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} & 200 400 \\ 12 \frac{5\%(\text{E24})}{120 104 100 $							Jumper < 50m Ω	$10M\Omega < R \le 22M\Omega$	5A
$ 14 \vee \frac{-55 \ ^{\circ} C \ ^{\circ} }{155 \ ^{\circ} C} 150 \vee 300 \vee 300 \vee 10 \le R \le 10M0 120 \ Ppm^{\circ} C 100 < R \le 10M0 100 < R \le 10M0 $	AC0805							±200ppm°C	
AC1206 $ AC1206 $ $ AC1206 $ $ AC1206 $ $ I = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =$							5% (E24)	$ \Omega \le R \le 0\Omega $	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1/4 W		150V	300V	300V	$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
$ AC1206 = \begin{bmatrix} 1/4 & W & -55 & ^{\circ}C & to \\ 1/4 & W & 155 & ^{\circ}C & 200V & 400V & 500V & 0.5\% & 1\% & (E24)E96 & 10Q < R \le 10MQ & Maximum \\ IQ \le R \le 22MQ & \pm 200ppm^{\circ}C & 2A \\ 0.5\% & 1% & (E24)E96 & 10Q < R \le 10MQ & Maximum \\ IQ \le R \le 10MQ & \pm 100ppm^{\circ}C & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ \pm 200ppm^{\circ}C & 0.5\% & 10Q < R \le 10Q \\ 1/2 & W & -55 & ^{\circ}C & to \\ 155 & ^{\circ}C & 200V & 400V & 500V & 500V & 1Q \le R \le 10MQ & \pm 200 ppm^{\circ}C \\ 0.5\% & 1% & (E24)E96 & 10Q < R \le 10MQ \\ IQ \le R \le 10MQ & \pm 100 ppm^{\circ}C & 0.5\% & 10Q < R \le 10MQ \\ IQ \le R \le 10MQ & \pm 100 ppm^{\circ}C & 2A \\ 1/2 & W & -55 & ^{\circ}C & to \\ 155 & ^{\circ}C & 200V & 500V & 500V & 500V & 0.5\% & 1\% & (E24)E96 & 10Q < R \le 10MQ \\ IQ \le R \le 10MQ & \pm 100 ppm^{\circ}C & 2A \\ 0.5\% & 1\% & (E24)E96 & 10Q < R \le 10MQ & Maximum \\ IQ \le R \le 10MQ & \pm 100 ppm^{\circ}C & 2A \\ 0.5\% & 1\% & (E24)E96 & 10Q < R \le 10MQ & Maximum \\ IQ \le R \le 10MQ & \pm 100 ppm^{\circ}C & 2A \\ 0.5\% & 1\% & (E24)E96 & 10Q < R \le 10MQ & 10A \\ 10MQ < R \le 22MQ & 10A \\ 10MQ < R \le 22MQ & 10A \\ 10MQ & R \le 10MQ & 100 ppm^{\circ}C & 2A \\ 10MQ & R \le 10MQ & R \le 10MQ & 100 ppm^{\circ}C & 2A \\ 10MQ & R \le 10MQ & R \le 10MQ & 100 ppm^{\circ}C & 1$			155 °C				0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
$AC1206 = \begin{bmatrix} 1/4 & W & -55 & ^{\circ}C & to \\ 1/4 & W & 155 & ^{\circ}C & 200V & 400V & 500V & 0.5\%, 1\% (E24/E96) & 10Q < R \le 10MQ & Maximum \\ 1Q \le R \le 10MQ & \pm 100ppm^{\circ}C & Current \\ Jumper<50mQ & 10MQ < R \le 22MQ & 10A \\ \pm 200ppm^{\circ}C & 10MQ & R \le 10MQ & 10A \\ \pm 200ppm^{\circ}C & 10MQ & R \le 10MQ & 10A \\ \pm 200ppm^{\circ}C & 10MQ & R \le 10MQ & 10A \\ \pm 200ppm^{\circ}C & 10Q \le R \le 10MQ & 10Q \le R \le 10MQ & 10Q \le R \le 10MQ \\ 1Q \le R \le 10MQ & \pm 100 ppm^{\circ}C & 10Q \le R \le 10MQ & 10Q \le 10MQ & 10MQ & 10Q \le 10MQ & 10MQ $							$ \Omega \le R \le 0M\Omega $	±100 ppm°C	
$AC1206 = \begin{bmatrix} 1/4 & W & -55 & ^{\circ}C & t_{0} \\ 1/5 & ^{\circ}C & 200V & 400V & 500V & 05\% & 1\% & (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ I\Omega \le R \le 10M\Omega & \pm 100ppm^{\circ}C & Current \\ Jumper<50m\Omega & 10M\Omega < R \le 22M\Omega & 10A \\ \pm 200ppm^{\circ}C & 200V & 400V & 500V & 1\Omega \le R \le 10M\Omega & \pm 200 ppm^{\circ}C \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 400V & 500V & 1\Omega \le R \le 10M\Omega & \pm 200 ppm^{\circ}C \\ & & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 400V & 500V & 1\Omega \le R \le 10M\Omega & \pm 100 ppm^{\circ}C \\ & & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 500V & 1\Omega \le R \le 10M\Omega & \pm 100 ppm^{\circ}C \\ & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 500V & 05\% & 1\% & (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 500V & 05\% & 1\% & (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 500V & 05\% & 1\% & (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 500V & 05\% & 1\% & (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ & & & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 05\% & 10\Omega < R \le 10M\Omega & 000Pm^{\circ}C & Current \\ & & & & & & & & & & & & & & & & \\ 1/2 & W & -55 & ^{\circ}C & t_{0} & 200V & 500V & 500V & 05\% & 10\Omega < R \le 10M\Omega & 000Pm^{\circ}C & Current \\ & & & & & & & & & & & & & & & & & & $							5% (E24)	$ \Omega \leq R \leq 0\Omega $	Rated Current
$AC1206 = \begin{bmatrix} 1/4 \ W & 155 \ ^{\circ}C & 200V & 400V & 500V & 500V & 500V & 100 \ 100 \ Current \\ I\Omega \le R \le 10M\Omega & \pm 100ppm^{\circ}C & Current \\ Jumper<50m\Omega & 10M\Omega < R \le 22M\Omega & 10A \\ \pm 200ppm^{\circ}C & 200V & 400V & 500V & 1\Omega \le R \le 10M\Omega & \pm 200 \ ppm^{\circ}C & 0.5\% \ 162 \ 4.104 \ 100 \ 2.102 \ 2.102 \ 100 \ 2.102 \ 2.102 \ 100 \ 2.102$							$I\Omega \le R \le 22M\Omega$	±200ppm°C	2A
$AC1206 = \begin{bmatrix} 155 \ ^{\circ}C & 10 \ S \ C \ Current \\ Jumper < 50mQ & 10MQ < R \le 22MQ & 10A \\ \pm 200ppm^{\circ}C & \pm 200ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 200 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 100 ppm^{\circ}C \\ 10Q < R \le 10MQ & \pm 1$		1/4 \//	- 55 °C to	200V	400V	V 500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
$ AC1206 $ $ AC1206 $ $ I2 W = -55 \ ^{\circ}C \ to \\ I55 \ ^{\circ}C = 200V = 400V = 500V = 500V = 10 \ ^{\circ}C = 100 \ ^{\circ}C = 1000 \ ^{\circ}C = 10000 \ ^{\circ}C = 1000 $		1/7 VV	155 °C				$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC1204						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
$ AC1210 $ $ I / 2 W - \frac{-55 \ ^{\circ}C \ to}{155 \ ^{\circ}C} 200V 400V 500V 500V 1 \Omega \leq R \leq 10M\Omega \pm 200 \ ppm^{\circ}C 0.5\%, 1\% (E24/E96) 10\Omega < R \leq 10M\Omega \pm 100 \ ppm^{\circ}C 1 \Omega \leq R \leq 10M\Omega \pm 100 \ ppm^{\circ}C 1 \Omega \leq R \leq 10M\Omega \pm 100 \ ppm^{\circ}C 2A 10\Omega \leq R \leq 10M\Omega 1 \Omega \leq 10M\Omega 1 \Omega \leq R \leq 10M\Omega 1 \Omega \leq 10$	AC1206							±200ppm°C	
$AC1210 = \frac{1}{12} W = \frac{200V}{155 °C} = \frac{400V}{500V} = \frac{500V}{500V} = \frac{102 (E24/E96)}{102 < R \le 10M\Omega} = \frac{100 \text{ ppm°C}}{100 \text{ ppm°C}} = \frac{100 \text{ s}^{-10} \text$					400\/	500V	5% (E24)	$ \Omega \le R \le 0\Omega $	
$AC1210 = \frac{155 \ ^{\circ}C}{1000} = 10000 \ (5\%, 1\%, (E24/E96) \ 10000 \ (E24/E96) \ 10000 \ (E24/E96) \ 100000 \ (E24/E96) \ $		1/2 W	- 55 °C to	200V			$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
$AC1210 = \begin{bmatrix} 1/2 & W & -55 \ ^{\circ}C \ to \\ 1/2 & W & -55 \ ^{\circ}C \ to \\ 155 \ ^{\circ}C & 200V & 500V & 500V & 500V & 500V & 0.5\% \ 1\% \ (E24/E96) & 10\Omega < R \le 10M\Omega & Maximum \\ 1\Omega \le R \le 10M\Omega & \pm 100ppm^{\circ}C & Current \\ Jumper < 50m\Omega & 10M\Omega < R \le 22M\Omega & 10A \\ \pm 200ppm^{\circ}C & UA & 0.5\% \ (E24) & 1\Omega \le R \le 10\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega < R \le 10M\Omega & 0.5\% \ (E24) & 10M\Omega & 0.5\%$		1/2 **	155 °C		5007	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$		
$AC1210 = \frac{1}{10000000000000000000000000000000000$							$ \Omega \le R \le 0M\Omega $	±100 ppm°C	
AC1210 = 1.2 Comparing C = 1.00 Comp							5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
$AC1210 \qquad \begin{array}{c} 1/2 \ W \\ 155 \ ^{\circ}C \\ I \\ W \\ -55 \ ^{\circ}C \ to \\ 155 \ ^{\circ}C \end{array} \qquad \begin{array}{c} 200 \\ 500 \\ 155 \ ^{\circ}C \end{array} \qquad \begin{array}{c} 100 \\$							$I\Omega \le R \le 22M\Omega$	±200ppm°C	2A
$AC1210 = \begin{bmatrix} 155 \ ^{\circ}C & 1000 \ \pm 100 \ \text{ppm}^{\circ}C & Current \\ \text{Jumper<50m} & 10M\Omega < R \le 22M\Omega & 10A \ \pm 200 \ \text{ppm}^{\circ}C & 10A \ \pm 100 \ \text{ppm}^{\circ}C & 10A \ \text{ppm}^{\circ}C \ \text{ppm}$		1/2 \//	- 55 °C to	2001/	5001/	500\/	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
AC1210 $ \frac{\pm 200 \text{ppm}^{\circ}\text{C}}{1 \text{ W}} = \frac{-55 ^{\circ}\text{C to}}{155 ^{\circ}\text{C}} = 200 500 500 500 1\Omega \leq \text{R} \leq 10 \Omega \pm 200 \text{ppm}^{\circ}\text{C} = 0.5\%, 1\% (\text{E24/E96}) = 10\Omega < \text{R} \leq 10 \Omega\Omega \text{R} \leq 10 \Omega\Omega \text{R} \leq 10 \Omega\Omega \text{R} = 10 \Omega\Omega \Omega\Omega \text{R} = 10 \Omega\Omega \Omega \text{R} = 10 \Omega\Omega \Omega \Omega $		172 • •	155 ℃	2001	5001	5007	$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
±200ppm°C 5% (E24) IΩ ≤ R ≤ I0Ω IW -55 °C to 155 °C 200V 500V 500V 1Ω ≤ R ≤ I0MΩ ±200 ppm°C 0.5%, 1% (E24/E96) I0Ω < R ≤ I0MΩ	AC1210						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
$I W = \begin{bmatrix} -55 \ ^{\circ}C \ to \\ 155 \ ^{\circ}C \end{bmatrix} = \begin{bmatrix} 200V \\ 500V \end{bmatrix} = \begin{bmatrix} 10V \\ 500V \end{bmatrix} = \begin{bmatrix} 10M\Omega \\ 500V \\ 0.5\% \ 1\% \ (E24/E96) \end{bmatrix} = \begin{bmatrix} 10M\Omega \\ 10\Omega < R \le 10M\Omega \end{bmatrix}$	ACIZIU							±200ppm°C	
1 W 200V 500V 500V 500V 102 CH 42							5% (E24)	$ \Omega \le R \le 0\Omega $	
155 °C 0.5%, 1% (E24/E96) $10\Omega < R \le 10M\Omega$		IW	- 55 °C to	200∨	500V	500V	$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
			155 ℃	2001	5001	2007	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
							$ \Omega \le R \le 0M\Omega $	±100 ppm°C	

	CHARACTERISTICS							
ТҮРЕ	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
		− 55 °C to				$ \Omega \leq R \leq M\Omega $	±200ppm°C	6A
	IW	-55 °C to	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 1M\Omega$	Maximum
		100 C				$ \Omega \leq R \leq M\Omega $	±100ppm°C	Current
AC1218						Jumper<50m Ω		10A
						5% (E24)	$ \Omega \le R \le 0\Omega $	
	1.5W	- 55 °C to	200V	500V	500V	$ \Omega \leq R \leq M\Omega $	±200 ppm°C	
	1.3 V V	155 ℃	200 v	2004	2004	0,5%, 1% (E24/E96)	$ 0\Omega < R \le M\Omega $	
_						$ \Omega \le R \le M\Omega $	±100 ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
		−55 °C to	200∨	500V	00V 500V	$ \Omega \le R \le 22M\Omega$	±200ppm°C	2A
	2/4 \ \ \ /					0,5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
	· · · · · (C	155 °C	200 v			$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
4 6 2 0 1 0						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC2010							±200ppm°C	
					500∨ 500∨	5% (E24)	$ \Omega \le R \le 0\Omega $	
	1.25W	- 55 °C to	200V	5001/		$ \Omega \le R \le 0M\Omega $	±200 ppm°C	
	1.23 * *	155 ℃	2001	5001		0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$ \Omega \le R \le 0M\Omega $	±100 ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
						$ \Omega \le R \le 22M\Omega$	±200ppm°C	2A
	IW	- 55 °C to	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
		155 ℃	2001	5001	5001	$ \Omega \le R \le 0M\Omega $	±100ppm°C	Current
AC2512						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
ACZJIZ							±200ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	
	2 W	- 55 °C to	200V	400V	500V	$ \Omega \le R \le 10M\Omega$	±200 ppm°C	
	2	155 ℃	2001	1001	5001	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$ \Omega \le R \le 0M\Omega $	±100 ppm°C	

Chip Resistor Surface Mount | AC | SERIES | 0201 to 2512

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0201	AC0402	AC0603	AC0805	AC1206	AC1210	AC1218	AC2010	AC2512
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000			
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000			
	13" (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)							4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

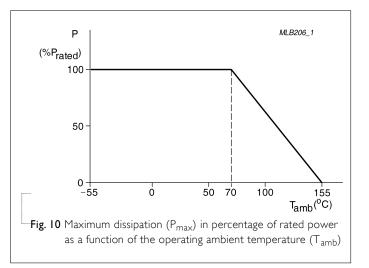
OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: AC0201=1/20W (0.05W) AC0402=1/16W (0.0625W); 1/8W (0.125W) AC0603=1/10W (0.1W); 1/5W (0.2W) AC0805=1/8W (0.125W); 1/4 W(0.25 W) AC1206=1/4W (0.25W); 1/2 W (0.5 W) AC1210=1/2W (0.5W); 1/2 W (0.5 W) AC1218=1W; 1.5W AC2010=3/4W (0.75W); 1.25W AC2512=1 W; 2W

RATED VOLTAGE


The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{(P \times R)}$

Or Maximum working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V) P = Rated power (W) R = Resistance value (Ω)

Chip Resistor Surface MountACSERIES0201 to 2512

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T _A = 155 °C, unpowered	±(1.0%+0.05 Ω) for D/F tol ±(2.0%+0.05 Ω) for J tol <50 m Ω for Jumper	
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.05 Ω) for D/F tol ±(2.0%+0.05 Ω) for J tol <100 m Ω for Jumper	
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I ,000 hours; 85 °C / 85% RH I 0% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol $< 100 \text{ m}\Omega$ for Jumper	
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol <100 m Ω for Jumper	
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	\pm (0.5%+0.05 Ω) for D/F tol \pm (1.0%+0.05 Ω) for J tol <50 m Ω for Jumper No visible damage	
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	\pm (0.5%+0.05 Ω) for D/F tol \pm (1.0%+0.05 Ω) for J tol <50 m Ω for Jumper	
ESD AEC-Q200 Test 17 AEC-Q200-002		Human Body Model, I _{pos.} + I _{neg.} discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05 $Ω$) <50 m $Ω$ for Jumper	

Chip Resistor Surface MountACSERIES0201 to 2512

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	 Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 7±0.5 seconds. 	Well tinned (≥95% covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	±(1.0%+0.05 Ω) <50 m Ω for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)}$ × 10 ⁶ (ppm/°C) Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R_1=resistance at reference temperature in ohms R_2=resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60115-14.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	\pm (1.0%+0.05Ω) for D/F tol \pm (2.0%+0.05Ω) for J tol <50 mΩ for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2° C , unpowered	±(1.0%+0.05 Ω)

YAGEO	Phicomp			
	Chip Resistor Surface Mount	AC	SERIES	0201 to 2512

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel & double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing
			- Extend resistance range
			- Add in AC0201
			- Update FOS test and requirements
Version 3	Feb 13, 2014	-	- Feature description updated
			- add ±0.5%
			- delete 10" taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added
			- ACI218 marking and outline figure updated
Version I	Feb. 01, 2011	-	- Case size 1210, 1218, 2010, 2512 extended
			- Test method and procedure updated
			- Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

Chip Resistor Surface Mount | AC | SERIES | 0201 to 2512

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

AC0805KKX7R7BB684 AC0603JRNPO0BN681 AC0603KRX7R5BB105 AC0603JRNPO0BN561			
AC1206JKNPOZBN331 AC1206KKX7RZBB102 AC1206KKX7R0BB683 AC1206JRNPOYBN681			
AC0402JRNPO9BN102 AC0603CRNPO9BN9R0 AC0805JRNPO0BN820 AC0603DRNPO9BN9R0			
AC0603DRNPO9BN5R0 AC0805KRX7R0BB471 AC1206KRX7R8BB474 AC1206KRX7R9BB334			
AC0805CRNPO9BN8R2 AC0402JRNPO9BN271 AC0603FRNPO9BN470 AC0402DRNPO9BN8R2			
AC0805KKX7R8BB225 AC0402BRNPO9BNR50 AC0603BRNPO9BN3R3 AC0805JRNPO9BN150			
AC0805JRNPO9BN560 AC0603KRX7R8BB184 AC0603BRNPO9BN6R8 AC0805KKX7R9BB684			
AC0603FRNPO9BN270 AC1206JRNPO0BN330 AC0603JRNPO9BN8R2 AC0603KRX7R0BB104			
AC0402KRX7R8BB182 AC1206KKX7RBBB222 AC0603FRNPO9BN150 AC0402BRNPO9BNR56			
AC1206KRX7R8BB334 AC0603CRNPO9BN2R7 AC0603JRNPO0BN331 AC0603CRNPO9BN5R0			
AC0805KRX7R0BB332 AC0402FRNPO9BN680 AC1206JRNPO0BN152 AC0402KRX7R9BB271			
AC0805KRX7R9BB332 AC0402BRNPO9BN6R8 AC0402CRNPO9BN9R0 AC0603CRNPO9BN1R8			
AC1206JRNPO9BN272 AC0402BRNPO9BNR47 AC0402JR-7W8K2L AC0805FR-7W5R6L AC0805DR-07330RL			
AC0402JR-7W120KL AC2512FK-07909KL AC0402DR-0743KL AC0603DR-07220RL AC1218FK-07619RL			
AC0603FR-072M26L AC0603FR-7W33RL AC0805FR-071R65L AC0201FR-071R37L AC1206FR-0743R2L			
AC1218JK-073R9L AC1206FR-0710R7L AC0402JR-7W75KL AC1206FR-079R76L AC0402FR-7W86K6L			
AC0603JR-7W1RL AC0402DR-0733RL AC1206FR-073M4L AC1218JK-0715RL AC0603FR-7W4R75L AC0402FR-			
<u>0776R8L</u> <u>AC0805FR-131K2L</u> <u>AC0603FR-071R47L</u> <u>AC0805DR-07430RL</u> <u>AC1206FR-0710R2L</u> <u>AC0402FR-071M33L</u>			
AC1210FR-0716R5L AC0603DR-07330RL AC0201JR-071R2L AC0603DR-072K61L AC0805FR-7W3RL			
AC0402FR-7W48K7L AC0201FR-0712RL AC0402FR-7W57K6L AC1206FR-0738R3L AC2512FK-071R37L			
AC0402FR-072M74L AC1210FR-7W24K9L AC0402DR-0726K1L AC0402FR-0711R5L AC0805FR-076R49L			
AC0402DR-078K06L AC0805FR-7W51RL AC0603FR-071R78L AC0402FR-7W30KL AC0603DR-072ML			
AC1218FK-075R6L			

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

AC0603FR-0733KL AC0603FR-0710RL AC0603FR-070RL AC0603FR-071KL AC0603FR-071K37L AC0603FR-071K5L AC0603FR-071K8L AC0603FR-071ML AC0603FR-0710KL AC0603FR-07100KL AC0603FR-07120RL AC0603FR-07191KL AC0603FR-072K21L AC0603FR-0720KL AC0603FR-074K7L AC0603FR-074R75L AC0603FR-07470RL AC0402FR-07100KL AC0402FR-07100RL AC0402FR-0710KL AC0402FR-07110RL AC0402FR-07120RL AC0402FR-0712KL AC0402FR-0712RL AC0402FR-07130RL AC0402FR-07150RL AC0402FR-0715KL AC0402FR-07180KL AC0402FR-0718KL AC0402FR-071K5L AC0402FR-071K8L AC0402FR-071KL AC0402FR-071ML AC0402FR-07200KL AC0402FR-0720KL AC0402FR-07220KL AC0402FR-07220RL AC0402FR-0722KL AC0402FR-0722RL AC0402FR-07240KL AC0402FR-0724KL AC0402FR-07270KL AC0402FR-07270RL AC0402FR-072K2L AC0402FR-072K7L AC0402FR-072KL AC0402FR-07300KL AC0402FR-0730KL AC0402FR-07330KL AC0402FR-0733RL AC0402FR-07360KL AC0402FR-073K3L AC0402FR-073KL AC0402FR-07430KL AC0402FR-0743RL AC0402FR-07470KL AC0402FR-07470RL AC0402FR-0747KL AC0402FR-0747RL AC0402FR-074K7L AC0402FR-0751KL AC0402FR-0751RL AC0402FR-07560RL AC0402FR-075K6L AC0402FR-0762RL AC0402FR-07680RL AC0402FR-0768KL AC0402FR-0768RL AC0402FR-07750KL AC0402FR-0775RL AC0402FR-07820RL AC0402FR-0782RL AC0402FR-07910KL AC0402FR-079K1L AC0603FR-07100RL AC0603FR-07110KL AC0603FR-07110RL AC0603FR-0711KL AC0603FR-0711RL AC0603FR-07120KL AC0603FR-0712KL AC0603FR-0712RL AC0603FR-07130KL AC0603FR-0713KL AC0603FR-07150KL AC0603FR-07150RL AC0603FR-0715KL AC0603FR-0715RL AC0603FR-07160KL AC0603FR-0716KL AC0603FR-0716RL AC0603FR-07180KL AC0603FR-07180RL AC0603FR-0718KL AC0603FR-07200KL AC0603FR-0720RL AC0603FR-07220KL AC0603FR-07220RL AC0603FR-0722KL AC0603FR-0722RL